REPUBLICA DEL ECUADOR SECRETARIA GENERAL DEL CONSEJO DE SEGURIDAD NACIONAL INSTITUTO DE ALTOS ESTUDIOS NACIONALES

XXIII CURSO SUPERIOR DE SEGURIDAD NACIONAL PARA EL DESARROLLO

TRABAJO DE INVESTIGACION INDIVIDUAL

"INCIDENCIA ECONOMICA DEL INCUMPLIMIENTO DEL PLAN MAESTRO DE ELFCTRIFICACION EN EL COSTO DE LA ENERGIA"

ING. HERMEL FLORES MALDONADO

1995 - 1996

INSTITUTO DE ALTOS ESTUDIOS NACIONALES -IAENXXIII CURSO

TRABAJO DE INVESTIGACION INDIVIDUAL

тема: Incidencia económica del incumplimiento del Plan Maestro de Electrificación en el costo de la energía.

ASESOR RESPONSABLE: Crnl. EW. Conzalo Paredes

CURSANTE: Ing. Hermel Flores Maldonado

Quito, junio de 1996

AGRADECIMIENTO:

Al Instituto de Altos Estudios Nacionales, a sus Directivos y Asesores que han sido verdaderos guías en el conocimiento de la realidad de nuestro país, y, al Instituto Ecuatoriano de Electrificación por auspiciar mi formación profesional.

INDICE GENERAL

	CAPITULO I 1
	INTRODUCCION 1
	CAPITULO II
2.1	IMPORTANCIA DEL SECTOR ELEC-
	TRICO
	CAPITULO III 5
3.1	LA PLANIFICACION EN EL INS-
	TITUTO ECUATORIANO DE ELEC-
	TRIFICACION -INECEL 5
	CAPITULO IV 6
4.1.	EL DESARROLLO DEL SECTOR
	ELECTRICO ECUATORIANO . 6
	CAPITULO V
5.1	SITUACIÓN DEL SECTOR ELÉC-
	TRICO EN EL PERÍO-
	DO 1992-1995 18
5.2	INSTALACIONES EN OPÉRACION Y
	EMPRESAS SERVIDAS, ENERO-
	DICIEMBRE/1995 24
	5.2.2 Subestaciones MVA
	(máx) 24
	5.2.3 Líneas de Transmisión
	(Km) 24
5.3.	RESULTADOS Y ANALISIS DE LA
	OPERACION DEL SISTEMA ELEC-
	TRICO 26

5.3.1	Generación	neta	de	las	centrales	de	INECEL	•	26
				5	.3.2]	Demanda	Máx	ima
							coinci	den	t e
						•	del SNI	•	26
				5	.3.3		Energía	fact	tu-
							rada .		26
				5	.3.4		Energía	Tot	tal
							entregad	la	27
				5	.3.5		Factura	ción	27
				5	.3.6	1	Consumo)	dе
							combust:	ible	s 2 7

	CAPIT	$ULO VI \dots 38$
6.1		CAUSAS DE DIFERIMIENTO DEL
		PLAN38
	САРІТ	U L O VII 41
	7.1	LA CRISIS DE 199541
	7.1.1	HIDROLOGIA41
	7.1.2	GENERACION TERMOELECTRICA 42
	7.1.3	ENERGIA NO SUMINISTRADA 42
		PERDIDAS ECONOMICAS Y SOCIA-
		LES PARA EL PAIS44
		7.2.1 COSTO SOCIAL44
		7.2.2 MEDIDAS EMERGENTES 46
	7.3 EFECTOS DEL DIFERIMIENTO 1995	
		CAPITULO VIII51
	8.1 MARCO LEGAL	
		PROCESOS DE CONCESION Y LEY
		DEL SECTOR ELECTRICO 53
		8.2.1 Proyecto Toachi-Pila-
		tón (171 MW) 53
		8.2.2 Proyecto hidroeléctri-
		co San Francisco (230
		MW)54
		8.2.3 Permisos de genera-
		ción55
		8.2.4 Ley del Sector
		Eléctrico56

iii

CAPITULO IX 60)
9.1 SITUACION FINANCIERA DE INECEL60	J
9.1.1 VENTA DE ENERGIA A EMPRESA ELECTRICAS 60	ŀ
9.1.2 SITUACION TARIFARIA 61	
9.1.3 OTRAS INCIDENCIAS EN LA SITUACION FI-	
NACIERA 63	
CAPITULO X64	
10.1 CONCLUSIONES Y RECOMENDACIONES 64	
10.1.1 CONCLUSIONES 64	
10.1.2 RECOMENDACIONES	
BIBLIOGRAFIA 68	
CAPITULO I 1	
INTRODUCCION 1	
CAPITULO II 3	
IMPORTANCIA DEL SECTOR	
ELECTRICO 3	
CAPITULO III 5	
LA PLANIFICACION EN EL INS-	
TITUTO ECUATORIANO DE ELEC-	
TRIFICACION-INECEL 5	
CARLETT O IV	

INDICE DE CUADROS Y GRAFICOS

CUADRO DE GRAFICOS	Pág	g. Nº
Desarrollo histórico del sector Eléctrico Público	(cuadro 1)	68
Potencial Hidroeléctrico del País	(cuadro 2)	69
Catálogo de Centrales Grandes	(cuadro 3)	70
Catálogos de Centrales Medianas	(cuadro 4)	71
Catálogo de Pequeñas y Mini centrales	(cuadro 5)	72
Proyectos de Generación considerandos para el	(0	
desarrollo del Futuro	(cuadro 6)	73
Solicitudes de generación de hasta 50 MW	(
en trámite	(cuadro 7a y	7b)74
Planes alternativos de quipamiento de generación	(3	,
del Sistema Nacional Interconectado	(cuadro 8)	76
Calendario de Inversiones del Plan de	(
Equipamiento del SNI	(cuadro 9)	77
Previsión de la demanda	(cuadro 10)	78
Generación de Centrales Hidroeléctricas y	(,	
Termoeléctricas a nivel de bornes de		
generador: Energía GWH	(cuadro 12)	79
Potencia instalada hidráulica, Térmica	(gráfico 1)	81
Población servida por año	(gráfico 2)	82
2Número de abonados por año	(gráfico 3)	83
Energía generada: hidráulica, térmica	(gráfico 4)	84
Watios por habitante	(gráfico 5)	85
KWH/habitante	(gráfico 6)	86
Demanda máxima (MW) por año	(gráfico 7)	87
Sistema Eléctrico de INECEL	(8.52200 .)	٠.
Centrales y Líneas de Transmisión		88
Constance & Dinom do Limburgaron		

CAPITULO I

INTRODUCCION

La crisis del sector eléctrico ecuatoriano, evidenciada en los últimos años, entre otros aspectos, por el diferimiento de los proyectos contemplados en el Plan Maestro de Electrificación y un sistema tarifario que no ha permitido su autofinanciamiento, han incidido en la disminución de los niveles de eficiencia, seguridad y confiabilidad (\hat{y}) produciendo un sobrecosto de la energía para el país.

El diferimiento de las obras, adicionalemnte, no ha permitido que el Ecuador cuente con fuentes de generación que permitan cubrir la demanda de energía en épocas de estiaje.

En 1995, se produjo un estiaje excepcional en la hidrología de la zona de influencia del Proyecto Hidroeléctrico Paute, el más grande del país que tiene una capacidad instalada de 1075 MW (representa aproximadamente el 60% del total nacional), este hecho obligó a un racionamiento de energía jamás producido.

Este racionamiento afectó a todos los sectores del país, con las consiguientes repercusiones económicas y sociales.

Para resolver temporalmente esta crisis, el Gobierno Nacional tomó algunas decisiones suscribiendo contratos en forma directa con EMELEC, ELECTROQUITO, SEACOAST y ELECTROQUIL, y realizando la instalación de generadores portátiles traídos desde México.

La energía generada por estas empresas es más costosa que la producida por las centrales hidráulicas y de otras recursos disponibles en el país.

Adicionalmente, el incumplimiento del Plan Maestro de Electrificación produce una desoptimización del sistema y una disminución del grado de confiabilidad y seguridad, y, un incremento del costo de la energía, debido al equipamiento emergente que tiene que realizarse para cubrir la demanda.

Si el Gobierno Nacional no promueve la generación de energía utilizando los grandes recursos renovables que tiene el país mediante la construcción de proyectos como los hidroeléctricos, las restricciones de la utilización de energía eléctrica impactarán en el bienestar de la población y en los costos del sector productivo, afectando a los Objetivos Nacionales Permanentes de Desarrollo Integral, Justicia Social y Preservación del Medio Ambiente.

Para la realización del presente trabajo, se revisó los aspectos principales de los Planes Maestros de Electrificación realizados por INECEL, varios documentos de archivo y se efectuaron entrevistas a varios especialistas del sector eléctrico.

El presente trabajo estuvo inicialmente encaminado a determinar la incidencia del incumplimiento del Plan Maestro de Electrificación en el costo de la energía eléctrica; pero luego del análisis realizado y las circunstancias presentadas en este sector, se llegó a determinar que ésto no es posible, sinembargo se pudo determinar su influencia en el costo social que este hecho representó al país y las repercusiones correspondientes.

CAPITULO II

2.1 IMPORTANCIA DEL SECTOR ELECTRICO

Desde que se desarrolló la tecnología para utilizar la energía eléctrica, su aplicación ha permitido impulsar al sector productivo y sobre todo ha posibilitado mejorar el bienestar y la calidad de vida de la población.

Para medir el desarrollo de un país existen varios parámetros e indicadores, entre los que se puede considerar al factor energético uno de ellos¹

Se podría afirmar que el sector eléctrico es el motor para el desarrollo de un país. Su utilización es tan amplia que sería demasiado largo enumerar la infinidad de su empleo y aplicaciones; el desarrollo tecnológico en varios campos como la informática, transporte, todo tipo de industrias, etc. confirman este hecho.

Por lo señalado se puede colegir que igualmente la carencia de este servicio impacta negativamente en el crecimiento de un país.

La globalización de las economías, la interrelación de los países y la apertura de mercados en que se encuentra el mundo actual, hace notar igualmente la necesidad imperiosa de que el país cuente con niveles de calidad, cantidad y oportunidad en el servicio eléctrico de tal manera que el sector productivo no se vea afectado.

Este hecho significa también que el país debe contar con

Las tarifas del servicio eléctrico, su incidencia socioeconómica en el usuario, su papel como racionalizador en el consumo de energía, Ing. Bolivar Lucio, IAEN, Quito, 1984

energía eléctrica igualmente competitiva, toda vez que las posibilidades de comercialización de energía con los países vecinos se va convirtiendo en una realidad.

Este objetivo se podrá alcanzar una vez que el país cuente con un marco jurídico adecuado, que entre otros aspectos debe propender a la utilización de los inmensos recursos renovables y su optimización; muestra de ello es la gran cantidad de recursos hídricos disponibles (21.000 MW económicamente aprovechables). La ejecución y construcción especialmente de los proyectos hidroeléctricos genera beneficios adicionales al país por el valor agregado que aportan y a la generación de fuentes de trabajo.

Por otra parte, el suministro de energía al sector rural es de vital importancia para el desarrollo de esas zonas y limita en parte, la migración de los campesinos hacia las grandes ciudades.

CAPITULO III

3.1 LA PLANIFICACION EN EL INSTITUTO ECUATORIANO DE ELECTRIFICACION -INECEL-

Una de la funciones del Instituto Ecuatoriano de Electrificación -INECEL- es la de elaborar el Plan Maestro de Electrificación y sus actualizaciones periódicas, el mismo que es presentado al Presidente de la República para su aprobación.

Este Plan se elabora en concordancia con los objetivos, políticas, metas y estrategias establecidas en el Plan Nacional de Desarrollo.

Cada uno de los Planes contiene principalmente la demanda de energía proyección đе eléctrica. la evaluación y jerarquización de los proyectos ejecutados en el período estudiado, las secuencias del equipamiento para cubrir la demanda proyectada, definición del sistema de transmisión, subtransmisión y distribución de energía, recursos requeridos, la organización que permita el cumplimiento del Plan, etc.

Los planes y sus actualizaciones han sido realizadas por técnicos especializados en varias disciplinas, para lo cual se han efectuado investigaciones y aplicaciones de modelos computacionales que posibilitan la evaluación y selección de varios planes de equipamiento y la simulación de su operación; pudiendo de esta manera obtener varias alternativas que permiten elegir la más conveniente al sector.

En el Capítulo IV se indica los proyectos de cada Plan Maestro de Electrificación y los resultados alcanzados.

CAPITULO IV

4.1. EL DESARROLLO DEL SECTOR ELECTRICO ECUATORIANO²

El servicio de energía eléctrica se inicia en el año de 1897 con la conformación de la Empresa Eléctrica Luz y Fuerza en la ciudad de Loja y la instalación de dos turbinas hidráulicas de 12 kw cada una, aprovechando caudales del río Malacatos. En Quito, se conformó la Empresa Jijón Gangotena y Urrutia, que disponía de una potencia de 50 kw.

En las décadas de 1920 y 1930 se suscribieron contratos con las compañías norteamericanas American Foreing Power Co., para abastecer de energía a las ciudades de Quito, Guayaquil y Riobamba.

En 1925 el Municipio de Guayaquil suscribió el contrato con la Empresa Eléctrica EMELEC por un período de 50 años y se garantizó utilidades en dólares. Una vez concluído el período contractual, el Gobierno Ecuatoriano no finiquitó el contrato; recién en 1995 se efectúa el arreglo de las cuentas, que a criterio de varios sectores se lo hizo beneficiando a la Empresa.

Con motivo del anunciado incremento tarifario de la energía eléctrica en 1995, uno de los medios de comunicación señala que "Una de las causas fundamentales del incremento de las tarifas es la deuda que mantiene la Empresa Eléctrica del Ecuador (EMELEC), de 280 mil millones de sucres a INECEL, por la energía suministrada para el abastecimiento monopólico a la ciudad de Guayaquil." (Diario HOY, jueves

¹La información referente a este capítulo fue obtenida de los Planes Maestros de Electrificación realizados por INECEL.

8 de junio de 1995, 2A).

Otro medio indica que "El escándalo político contra el Vicepresidente Dahik, incluye su participación en las negociaciones entre el Estado y EMELEC. Por la gran cantidad de dinero en juego, el cruce de cuentas dejará en claro si el Estado es o no, nucvamente perdedor." (LA HORA, martes 18 de julio de 1995).

En oficio publicado el 14 de octubre de 1985 E 1 UNIVERSO, еi Colegio đе Ingenieros Eléctricos у Electrónicos del Litoral se dirige al Presidente de la República (Ing. León Febres Cordero) señalando en una parte del texto que "Preocupa al Colegio Regional de Ingenieros Eléctricos, el que las inversiones efectuadas por Empresa Eléctrica del Ecuador para poder mantener servicio que presta a la ciudad de Guayaquil, incluye equipos obsoletos como lo son transformadores destinados a Subestaciones de reducción 69-13.8 KV, que han adquiridos a empresas en los Estados Unidos de América, luego de haber agotado su vida útil."

Varias organizaciones analizaron la situación del servicio eléctrico en el área de Guayaquil y la relación del Estado con esta empresa, es así como en el Boletín Técnico No.1 de 1985, la Asociación de Ingenieros de INECEL señala que la empresa EMELEC "no dió cumplimiento debido, a la obligación contractual de adoptar prácticas y sistemas modernos en la construcción, conservación y explotación de las instalaciones, ni tampoco a la realización de grandes inversiones para la provisión del servicio, que fue motivo de la expedición del Decreto Ley No. 580."

Lo cierto es que el Estado ecuatoriano no realizó un efectivo control y seguimiento a esta empresa, en cuya

gestión participaron directamente personajes de la política nacional, como son el Ing. León Febres Cordero, en calidad de Director Técnico y el Econ. Alberto Dahik, como Asesor.

En la década de 1940, de acuerdo con la Ley de Régimen Municipal, los Municipios se responsabilizaron del suministro de energía eléctrica. Esta función no la pudieron cumplir satisfactoriamente, debido a la carencia de estudios y planificación adecuadas y principalmente al criterio localista de los responsables en cada Municipio, hecho que incidió para que el desarrollo eléctrico a nivel nacional sea deficiente y anárquico.

En 1961 la potencia instalada en 1.200 centrales de generación térmica era de alrededor de 120.000 kw (120 Mw), siendo el índice por habitante de 25 watios.

A partir de 1961 INECEL inició una labor de recopilación de información sobre cartografía, geología e hidrometeorología del país y conjuntamente con el Servicio Nacional de Meteorología e Hidrología emprendieron programas de construcción de estaciones fluviométricas y meteorológicas, que más tarde servirían de base para los diseños de proyectos hidroeléctricos y en general para todo tipo de aprovechamiento hídrico³.

Para evitar la atomización y dispersión del servicio de energía eléctrica y reducir los costos de operación, a comienzos de la década de los años 60, el Estado plantea la necesidad de reorientar el Sector Eléctrico, para lo cual, el 23 de Mayo de 1961, mediante Decreto Ley de Emergencia No. 24, se promulga la Ley Básica de Electrificación, la

³El proceso de identificación, evaluación y aprovechamiento del recurso hidroenergético, Ing. Petronio Cisneros, Revista Técnica, Asociación de Ingenieros de INECEL, Quito, 1986.

cual crea el Instituto Ecuatoriano de Electrificación (INECEL) como el organismo estatal encargado de desarrollar el sector eléctrico.

Con su creación la gestión de INECEL debía estar encaminada a reemplazar a más de 100 entidades municipales y locales encargadas del suministro de energía eléctrica.

En 1966, el Ecuador disponía de 200.000 kw, correspondiendo un índice de 40 watios por habitante.

En el período de 1961 a 1966, INECEL inicia la planificación orientando su acción al largo plazo, para lo cual realiza la recopilación de información de los recursos hidráulicos del país, censo de instalaciones existentes, y elabora el primer Plan Nacional de Electrificación que contiene los objetivos propuestos, políticas de desarrollo y programa de obras.

El Plan Nacional de Electrificación de 1967 a 1972, señala el desarrollo de los Proyectos Pisayambo, Paute, Jubones, Toachi, la Central Térmica de Biblián y las redes respectivas, subestaciones y redes para transmisión, subtransmisión y distribución de energía. El Plan preveía la instalación de 414 MW, correspondiendo el 71% a hidráulica y el 29 % a térmica.

El monto de inversiones requerido para el Plan era de 5.141 millones de sucres (valores a 1964), pero INECEL recibió apenas 100 millones de sucres por año en el período de 1967 a 1972.

En este Plan se definió la necesidad de crear el Sistema Nacional Interconectado- SNI- y la integración eléctrica regional. 1

"El Sistema Nacional Interconectado-SNI- es el conjunto de centros de generación, líneas de transmisión, subestaciones principales y sistemas eléctricos regionales de distribución que permiten el aprovechamiento de los recursos energéticos del país en forma de energía eléctrica. "

La integración eléctrica significa la conformación de empresas eléctricas a nivel provincial, con miras a la integración regional posterior.

En estos años en la región y en el país se implementa el modelo Cepalino para el desarrollo industrial de sustitución de importaciones, hecho que se ve reflejado en el crecimiento del consumo de energía eléctrica.

En el período de 1967 a 1973, el crecimiento del sector fue del 10.1 % .

El siguiente Plan Nacional de Electrificación corresponde al período 1973-1979.

En este período se construye el proyecto hidroeléctrico Pisayambo, las centrales térmicas de Quito y Guayaquil. Entra en operación el sistema de Transmisión Pisayambo-Quito, Pisayambo-Ambato, con las subestaciones respectivas, es decir se inicia la conformación del Sistema Nacional Interconectado.

En el período indicado se crea el Fondo Nacional de Electrificación, con el 47% de las regalías que produce el petróleo en 1974 y que se reduce al 35% desde 1975. La

⁴ Influencia del Sistema Nacional de Transmisión en la seguridad del suministro de energía a nivel nacional, Ing. Víctor Orejuela, IAEN, Quito, 1994.

creación de este Fondo permitió al sector ser sujeto de crédito y conseguir los recursos para el financiamiento de los proyectos.

Las tasas de crecimiento del consumo eléctrico tuvieron un ritmo acelerado en los períodos 1970-1974 y 1975-1979, que corresponden al "boom" petrolero. El PIB creció al 12,9% y 6.0%, respectivamente.

A 1979 la población servida representa el 40.5 % del total y corresponde un índice de 108.1 watios por habitante.

En el período de 1974 a 1980, el crecimiento del sector fue del 16,7 %

En el período 1980-1984, el Gobierno Nacional pone en vigencia el Plan Maestro de Electrificación, con proyecciones hasta 1990.

Entre los objetivos del Plan de 1984, se señala la necesidad de complementar el inventario de recursos hidroeléctricos, establecer un programa de expansión de mediano y largo plazo, dando prioridad a los proyectos hidroeléctricos.

El Plan señala que en el período debe iniciarse la construcción de los siguientes proyectos:

Proyecto Hidroléctrico Paute Fase "C" (500 MW), Daule Peripa (130 MW), Paute-Mazar (140 MW), Toachi (300 MW), Agoyán (150 MW) y nuevos proyectos a definirse para una potencia instalada total de 935 MW. Adicionalmente el Plan considera la construcción de pequeñas centrales hidroeléctricas, implementar la electrificación rural, construcción de líneas de transmisión y subtransmisión con

las subestaciones respectivas.

En este período concluye la construcción del proyecto hidroeléctrico Paute Fases A y B (500 MW), entran en operación las centrales térmicas Estero Salado No.3 (73 MW), Esmcraldas (125 MW) y a gas en Santa Rosa (51,3 MW), también se finaliza la construcción y entran a funcionar las líneas de transmisión Guayaquil-Quito, Quito-Ibarra, Paute-Guayaquil, Paute-Cuenca, Santo Domingo-Esmeraldas, Quevedo-Portoviejo y las subestaciones respectivas.

Por la importancia que tiene el proyecto Paute en la generación de energía eléctrica para el país, es necesario indicar que desde el inicio de los estudios para el aprovechamiento del río Paute se consideró la siguiente secuencia⁵:

- a) Aprovechamiento de Mazar, Presa y Central
- b) Aprovechamiento Amaluza-Molino, Presa y central
- c) Aprovechamiento Sopladora, Presa y Central.

Requerimientos energéticos condujeron a INECEL a la construcción del aprovechamiento Amaluza-Molino (Presa Daniel Palacios) y la Central Molino. La construcción de la represa Amaluza-Molino concluyó en 1983, hecho que permitió un cambio sustancial en la generación en el país, pasando de tipo térmico a hidráulico.

El proyecto Paute- Mazar fue concebido para alojar en su reservorio de 413 ${\rm Hm}^3$, hasta 180 ${\rm Hm}^3$ de sedimentos en su vida útil de 50 años.

⁵La sedimentación del embalse Amaluza y equipos para el dragado, Ing. Alberto Aguirre, Boletín No. 4, Asociación de Ingenieros de INECEL, Quito, 1987

En razón de que no se construyó la represa de Mazar, INECEL optó por la instalación temporal de una draga para extraer los sedimentos cercanos a la represa, para que no obstruyan los desagues de fondo.

En 1980, INECEL realizó un inventario de los proyectos hidroeléctricos del país, seleccionando 11 cuencas con un potencial teórico de 73.390 MW, con una potencia técnica económicamente aprovechable de 21.520 MW, de la que el 90% se encuentra en la cuenca amazónica y el 10% en la del Pacífico, encontrándose el mayor potencial entre las cotas 300 y 1200 msnm. (Plan Maestro 1990-1999, pag.6-3).

De los aprovechamientos escogidos, 114 proyectos corresponden a centrales grandes (70% de una potencia menor de 200 MW y 10% de potencia mayor a 600 MW), 41 centrales medianas (potencia entre 5 y 50 MW) y 15 minicentrales (Ver Cuadros 3, 4 y 5).

Adicionalmente en este estudio se analizó la producción de energía mediante la utilización de hidrocarburos como el petróleo, gas natural y recursos energéticos no convencionales, como es la energía geotérmica, energía solar y energía de biomasa.

En 1983 el Gobierno decidió suspender a INECEL la cuenta en divisas que tenía en el Banco Central y congeló la tasa de cambio de los dólares de las regalías del petróleo en \$64,00 por dólar y el Banco Central seguía acreditando a favor del Estado los dólares de las regalías al valor real de la tasa de conversión oficial, pero el exceso producido entre los \$64,00 y la tasa real se distribuía a otras entidades, afectando a la economía de INECEL y directamente a la ejecución de los proyectos constantes en la Planificación, como es por ejemplo el proyectos Paute

Mazar, Daule-Peripa y otros que hasta la fecha constan en los Planes de Electrificación.

Para 1984, la energía eléctrica generada fue de 4.220 GWh, que equivale a 463 kwh/habitante. En este año se actualiza establece el "Plan este Plan se Maestro Electrificación, período 1984-2010".

Esta actualización del Plan señala la necesidad de complementar la construcción del Proyecto Agoyán (156 MW), centrales hidroeléctricas menores (12 MW), emprender la ejecución de los proyectos: Daule-Peripa (130 MW), Paute Fase "C", Paute Mazar (180 MW), completar el Sistema Nacional de Transmisión, electrificación rural, elevar el nivel de los estudios de los proyectos hidroeléctricos definidos en el Inventario, etc.

Hasta 1987, la ejecución del Plan Maestro permitió al país contar con las siguientes centrales de generación:

CENTRAL	POTENCIA	INSTALADA	MW	OPERACION
	Hidráulic	a Térmica		
Gas-Guayaquil			25.6	1976
Diesel-Guangopo	010	prime would deline admit	31.6	1977
Pisayambo		69,2		1977
Estero Salado N	No.2		73,0	1978
Estero Salado N	No.3		73,0	1980
Gas-Quito		ware work 45% 45%	47,7	1981
Esmeraldas			125,	1981
Paute-Fases A-I	3	500,0		1983
Agoyán		156,0		1987

⁶Plan Maestro de Electrificación del Ecuador 1990-1999, Quito,1990, p 3-4

En el período de 1981 a 1987, el crecimiento del sector es del 7.0 % .

En el Plan Maestro de Electrificación del período 19901999, considerando que la planificación integrada del
Sistema Nacional Interconectado se basa en la coordinación
y desarrollo de una estructura mínima de programas y
modelos computacionales y su esquema está encaminado a
minimizar las inversiones y con los costos de operación
actualizados, se elaboró la información que permite
identificar escenarios de proyección de la demanda y el
equipamiento de generación respectivo (Ver Cuadros 10 y 11)

En este Plan se identifica los siguientes proyectos de generación que están en construcción:

- Proyecto Paute- Fase C
- Proyecto Daule- Peripa (proyecto múltiple para riego, control de inundaciones, control salino, abastecimiento de agua potable y generación eléctrica).
- Rehabilitación de grupos termoeléctricos (134 MW).

La secuencia de los proyectos para el desarrollo futuro, considerados de costo mínimo son los que se detallan en el cuadro de la página siguiente:

PROYECTOS	POTENCIA	FECHA DE
	Mw	OPERACION
1.EN CONSTRUCCION		
Paute-Fase C .	575	Abr/1991
Daule Peripa	130	Oct/1995
Rehabilitación Térmica	134	Oct/1993
2.CORTO PLAZO		
T. Gas-Diesel	85	Oct/1996
San Francisco	230	Oct/1997
Chespi	167	Oct/1999
3. MEDIANO Y LARGO PL	AZO	
Sopladora	400	Oct/2000
T. Gas-Diesel	100	Oct/2002
Codo Sinclair	491	Oct/2003
Codo Sinclair	491	Oct/2008
Lligua Mullo	100	Oct/2013

Para el período 1990-2000 se establece un presupuesto total, expresado en moneda constante y con precios a enero de 1990 de US \$ 1440.46 millones.

Entre las Conclusiones y Recomendaciones del Plan Maestro se advierte sobre la necesidad de que las autoridades de gobierno concreten el financiamiento de la central de generación Daule-Peripa y se inicie lo más pronto la construcción, caso contrario el SNI se verá avocado a problemas de desabastecimiento y a recurrir a soluciones muy costosas para el país. Igualmente se menciona sobre la decisión para la ejecución del proyecto San Francisco y la realización de los estudios a nivel de licitación de los proyectos Sopladora y Chespi, la contratación de la segunda fase de dragado del embalse Amaluza y la alternativa al control de sedimentos.

El referido Plan establece el estado en que se encuentran los proyectos de generación considerados para el desarrollo futuro, conforme se indica en el Cuadro No.2

"A partir de 1980 el sector eléctrico comienza un proceso de desaceleración del crecimiento del consumo y demanda de energía eléctrica; fenómeno que mantiene coherencia con la recesión económica del país. El PIB alcanzó tasas de crecimiento de 2,7% en el período 1980-1986, en 1987 creció con una tasa del -6,0%, en 1989 se registró una tasa del 0,3%, en 1991 el PIB creció con un 5,0% y en 1993 la tasa fue del 2,0%"⁷

¹Crisis del Sectro Eléctrico, Ing. Oscar Marín, Quito, 1994 (Artículo elaborado para el Colegio de Ingenieros Civiles)

CAPITULO V

5.1 SITUACIÓN DEL SECTOR ELÉCTRICO EN EL PERÍO-DO 1992-1995⁸

A diciembre de 1992 la población ecuatoriana alcanzó a 10'741.000 habitantes, de los cuales el 75,2 % disponían de servicio eléctrico. La cobertura de viviendas electrificadas en el sector urbano fue del 95% y del sector rural el 52.1%. La energía generada fue de 671 GWh, que equivalen a 214 watios/habitante.

La capacidad instalada del SNI a enero de 1993 fue de 2279 MW, de los cuales 1692.6 corresponden a INECEL y 586.4 a los Sistemas Regionales.

Debido a insuficiencia de caudales en los períodos de estiaje la potencia firme de las centrales hidroeléctricas se reduce a 1210.5 MW y debido al insuficiente mantenimiento la potencia firme de las centrales térmicas a 583,2 MW, quedando por consiguiente una potencia efectiva de 1793.7 MW.

El Plan Maestro de Electrificación-período 1993-2002, establece el siguiente programa de equipamiento de costo mínimo:

⁸La información referente a este capítulo fue obtenida de los Planes Maestros de Electrificación ralizados por INECEL.

	POTENCIA STALADA MW	AÑO DE OPERACION
ELECTROQUIL	75	Ene/1993
ELECTROQUITO	33	Feb/1993
REHAB. PARQUE TERMICO	112	Abr-Oct/93
T. GAS	90	Dic/1993
T. GAS	80	Dic/1994
T. VAPOR	125	Dic/1995
DAULE PERIPA	130	Dic/1996
T. VAPOR	140	Dic/1997
SAN FRANCISCO	230	Dic/1999
T. GAS	80	Ene/2001
PAUTE MAZAR	180	Dic/2001

En este Plan se señala que "la postergación en la construcción del Proyecto Hidroeléctrico San Francisco provoca sobrecostos para el S.N.I."

En lo relacionado a las tarifas se indica que para la venta de energía de las Empresas Eléctricas a los usuarios es la siguiente:

AÑO	US \$CENTS/kwh
	Þ
1993	6.1
1994	6.4
1995	6.4
1996	7.6

Entre las Recomendaciones del Plan se menciona lo siguiente:

Que las autoridades del sector eléctrico y del Gobierno Nacional deberán firmar el contrato para el suministro e instalación de la turbina de 90 Mw, que está adjudicada y cuya operación está prevista a partir de diciembre de 1993.

- Firmar el contrato de la turbina de 125 MW, que debe operar a partir de diciembre de 1995 y que el financiamiento es a través del crédito del Gobierno de España.
- Concretar el financiamiento para la construcción del Proyecto San Francisco y Daule Peripa.
- Concretar financiamiento para los estudios a nivel de diseño definitivo de los Proyectos hidroeléctricos Mazar, Toachi y Coca Codo Sinclair.
 - En la Actualización del Plan Nacional de Electrificación para el período 1994-2010 (DPT-021/94, octubre 94), se indica que no se ha cumplido con el plan de obras previsto debido principalmente a lo siguiente:
- Deficiencias en la calidad de los repuestos suministrados para la rehabilitación del parque térmico de las Empresas Eléctricas.
- "La turbina de gas de 80 MW, prevista para entrar en servicio en diciembre de 1993, no ha podido ser contratada por la negativa del CONADE a ratificar la prioridad anteriormente dada."

⁹En la parte final del oficio No. 0002452 del 2 de agosto de 1994, se indica que "...La Secretaría General de Planificación del CONADE no declara prioritario este proyecto, por cuanto considera que no existen justificativos técnicos ni económicos para ello y además la política del Gobierno Nacional (continúa...)

En este punto es necesario establecer la cuestionable posición del CONADE al no ratificar esta prioridad, hecho que repercutirá gravemente en la economía del país, como se demostrará en el análisis posterior.

El ex- Gerente de INECEL señaló al respecto que "Como INECEL solicitamos hace mucho tiempo al secretario general del CONADE, en ese entonces al Dr. Galo Abril, que diera prioridad para la instalación de una turbina en Guavaguil. En el Gobierno anterior se reconocido esa prioridad, pero e 1 ex-secretario general del CONADE, Pablo Lucio Paredes cuyo asesor era Galo Abril, se opuso y ahora hay un estudio de actualización del Plan Maestro de Electrificación en el que se establece que si hasta diciembre no se instala en Guayaquil una turbina de 70 MW, racionamientos. El problema comienza con el doctor Galo Abril, secretario del CONADE, quien negó la autorización. De esta manera el país queda a un lado. Es que para ciertos altos funcionarios el país no importa." (Revista LA OTRA No.252, julio 27 de 1995)

- Debido al tiempo empleado para concretar el financiamiento con el Gobierno Español para la instalación de una turbina de 125 MW.
- Retraso de dos años de la Central hidroeléctrica Daule-Peripa, a cargo de CEDEGE, debido a problemas en la consecución de financiamiento.

^{(...}continuación)

es la de incentivar la inversión privada, especialmente en el campo de la generación de energía eléctrica según la programación establecida en la Agenda para el Desarrollo 1993-1996"

Con la expectativa de la promulgación de la Ley del Sector Eléctrico, se prevé que la construcción de los proyectos hidroeléctricos San Francisco, Paute Mazar y Toachi, se realice a través de la inversión privada.

En este documento se hace notar también que el sistema de transmisión Paute-Pascuales-Trinitaria, ha sufrido retrasos en su ejecución, hecho que ha contribuído para que el sistema esté operando en condiciones de riesgo y sea vulnerable a diverso tipo de contingencias (pág.1.8)

Es de señalar que en 1993, tanto el Gobierno como el Congreso Nacional, aprobaron la Ley de Modernización del Estado, Privatizaciones y Prestación de Servicios por parte de la Iniciativa Privada.

En este Plan se establece el siguiente equipamiento básico para la generación de energía:

EQUIPAMIENTO	POTENCIA	AÑO DE
(no es de mínimo costo)	INSTALADA (MW)	OPERACION
Rehabilitación del parque térmico las Empresas Eléctricas	116	Oct/1994
Central a gas	90	Oct/1995
Central a gas	92	Oct/1995
Central a gas	30	Oct/1996
Central a vapor	125	Oct/1997
Central hidroeléctrica Daule-Peripa	130	Oct/1998
Central Hidroeléctrica San Francisco	230	Dic/1999
Central de ciclo combinado que	100	Oct/2001
utilizaría el gas del golfo		
Central hidroeléctrica Apaquí	36	Oct/2001
Central hidroeléctrica Paute-Mazar	180	Oct/2003
Central hidroeléctrica Codo Sinclair	432	Oct/2006
TOTAL	.1.561	

En el plan se considera centrales de generación térmica que utilizan el gas del Golfo de Guayaquil.

Otras empresas también estuvieron interesadas en participar como son Northwest Pacífic, Wartsila Diesel y Electroquil, "pero la aspiración de competir en mejores condiciones quedó trunca cuando el vicepresidente de la República, Alberto Dahik, dió su aval para que se siga negociando una contrapropuesta que presentó el gobierno a dicho consorcio". 10

En esta actualización del Plan se puntualiza que "Las sucesivas postergaciones de la construcción de esta central, ha provocado que el plan de equipamiento del SNI, en el corto plazo, tenga el carácter de emergente y basado exclusivamente en plantas térmicas y que haya existido diferimientos en la construcción de otras opciones hidroeléctricas, desoptimizando así, el desarrollo técnico-económico del sistema de generación."

Adicionalmente se indica también sobre el retraso existente en la ejecución del plan de obras del Sistema Nacional de Transmisión y que también se pueden ejecutar los proyectos hidroeléctrico Toachi-Pilatón (171 MW) y Angamarca (50 MW).

Las inversiones requeridas para este plan son de 2.624 millones de dólares para el período 1993-2006.

Entre las acciones inmediatas se menciona contratar la central a gas de 90 MW, para que entre a generar en octubre de 1995.

En las páginas siguientes se indica las instalaciones en operación y empresas servidas, y los rendimientos de las centrales generadoras del Sistema Eléctrico de INECEL de enero a diciembre de 1995.

 $^{^{10}}El$ Comercio, 1 de mayo de 1995

5.2 INSTALACIONES EN OPERACION Y EMPRESAS SERVIDAS, ENERO-DICIEMBRE/1995. 11

5.2.1 Capacidad Instalada

Generación Mw (efectiva)	1995	%
1. Hidráulica	1305,0	78.07
2. Térmica	366.5	21.93
3. Total	1671.5	100.00
5.2.2 Subestaciones MVA (máx)		
1. Número		27
2. Capacidad MVA		5392.53
5.2.3 Líneas de Transmisión (Km)		
1. L/T a 138 KV	1162.2	58.53
2. L/T a 230 Kv	823.5	41.47
TOTAL	1985.7	100.00

Las Empresas Eléctricas servidas por INECEL son: EMELNORTE, EEEQ.S.A., EMELESA, Regional Manabí, Ambato, Cotopaxi, Riobamba, EMELSUR, EMELEC, Santo Domingo, Milagro, Centro-Sur (Cuenca), Los Ríos, El Oro, Regional Sur (Loja), Santa Elena, Azoguez y Bolívar. Por consiguiente, el número total de empresas es 18.

¹¹ Informe de resultados de operación del SNI, DOSNI, Quito, Marzo 1996.

25 SISTEMA ELECTRICO DE INECEL¹²

CENTRALES GENERADORAS 1995

CENTRAL	POTENCIA 1	POTENCIA	FACTO	R POTENCIA	TIPO	RENDIMIENTO	AÑO
NOMI	NAL* E	FECTIVA	DE	EFECTIVA	(1)	(kwh/gl)(Kwh/m	B ENTRADA
	(Mw)	(Mw)	POTENC	. POR UNID			OPERACION
Pucará	76.0 (2)	74.0	0.95	2x37 MW	Н	0.983	7 77
Guangopolo	31.2 (3)	29.5	0.80	6x4.9 MW	CI	15.49	77
Sta. Rosa	76.8	45.0	0.80	3x15 MW	G	8.96	81
G. Zevallos	30.94(4)	20.0	0.85	1x20 MW	G	8.45	76
G. Zevallos	146.0	125.0	0.85	2x62.5MW	V	13.21	80
Esmeraldas	132.5	132.0	0.85	1x125 MW	V	15.39	82
Paute	500.0	500.0	0.90	5x100 MW	H	1.42	1 83
	575.0	575.0	0.90	5x115 MW	Н		91
Agoyán	156.0	156.0	0.90	2x78 MW	H	0.368	87
G.Mexicanos	23.7	15.0	0.85	3x5 MW	T	5.80	95
TOTAL	1748.1	1671.5			-		

NOTAS:

(1) H= Hidráulica

G= Gas

V= Vapor

n= Nominal

(2) MVAn=40MVA/U

CI= Combustión Interna (3) MVAn=6.50 MVA/U (24.3 MW en 5 unid.

+ 1 unidad en mantenimiento)

(4) MVA=36.4 MVA

^{*} Potencia del generador.

¹² Informe de resultados de operación del SNI, DOSNI, quito, Marzo 1996

5.3. RESULTADOS Y ANALISIS DE LA OPERACION DEL SISTEMA ELECTRICO¹³

5.3.1 Generación neta de las centrales de INECEL

La generación neta de INECEL, en el año de 1995, fue de 6330.85 millones de Kwh, menor en 5.64% respecto a la del año anterior de 6708.94 millones de Kwh. La distribución porcentual se descompone así: 71.20% corresponde a generación hidroeléctrica y el 28.80% a generación termoeléctrica.

5.3.2 Demanda Máxima coincidente del SNI

La demanda máxima coincidente total del SNI (INECEL más empresas eléctricas Interconectadas) en el año de 1995 fue 1665.4 MW la misma que se presentó el día jueves 7 de diciembre de 1995.

El incremento de demanda respecto al año de 1994 (1467 Mw representa un 13.48%)

5.3.3 Energía facturada

La energía facturada por INECEL, por venta de energía en bloque a las Empresas Eléctricas Interconectadas al SNI en el año de 1995 fue de 6029.35 millones de Kwh cifra menor en 5.07 %, respecto a la energía facturada en 1994 de 6340.7 millones de kwh.

Esta disminución de la energía facturada por INECEL a la

¹³ Informe de resultados de operación del SNI, DOSNI, Quito, Marzo 1996

Empresas Eléctricas se debe, como se indicó. al racionamiento de energía ocasionado por el estiaje de 1995.

5.3.4 Energía Total entregada

La energía total entregada por INECEL a las Empresas Eléctricas Interconectadas al SNI de 6244.76 millones de Kwh, cifra menor en 1.51% respecto a la energía entregada en 1994 de 6340.7 millones de kwh.

De esta energía, el 52.80% fue para las Empresas Eléctricas: Quito y EMELEC y el resto (47.20%) para las otras empresas.

5.3.5 Facturación

La facturación de energía alcanzó 507320.57 millones de sucres, lo que representa un precio medio de venta de 84.28 sucres/Kwh. Respecto a 1994, significa una disminución del 3.66% para los ingresos por venta de energía y un incremento del 1.48% para el precio medio de venta.

5.3.6 Consumo de combustibles

Durante 1995 se consumieron 143.20 millones de galones de combustibles de acuerdo al siguiente detalle:

Bunker: 113.66 millones de galones.

Diesel: 29.54 millones de galones.

Respecto a 1994 hubo un incremento de 87.43%, debido a la menor generación hidroeléctrica por disminución de caudales de las cuencas del Paute, Agoyán y Pisayambo.

A continuación se indica los resultados de operación de INECEL, la producción del Sistema eléctrico, el consumo de

combustible de las centrales térmicas, la producción de energía neta y el consumo de combustibles de INECEL en el período de enero a diciembre de 1995.

RESULTADOS DE LA OPERACION DE INECEL

ENERO-DICIEMBRE DE 1995¹⁴

1.	Capacidad Instalada en generación	1671.50	Mw
	Potencia Nominal		
2.	Energía Generada		
	2.1 Bruta	6440.37	Gwh
	2.2 Neta	6330.85	Gwh
3.	Demanda Máxima		
	3.1 INECEL+Empresas Eléctrica Interco-		
	nectadas (07 diciembre)	1665.4	Mw
	3.2 INECEL (19 mayo)	1285.0	Mw
4.	Comercialización de Energía		
	4.1 Facturación Empresas Eléctricas	6019.35	Gwh
	4.2 Compra para la venta de energía	225.41	Gwh
	4.3 Total Comercialización de Energía	6244.76	Gwh
5.	Venta de Energía (millones de sucres)		
٠.		507220	E 7
	5.1 Facturación a Empresa Eléctricas	507320.	
	TOTAL	507320.	57
6.	Precio medio de venta	84.285.	/Kwh

¹⁴Informe de resultados de operación del SNI, DOSNI, Quito, Marzo 1996

PERIODO: ENERO-DICIEMBRE AÑO 1995

CENTRALES	ENERGIA	CONSUMO	AUXILIAR	ENERGI A
	BRUTA	GWh	%	NETA
	GWh			GWh
1. HIDROELECTRICAS	4519.57	12.05	0.27	4507.52
1.1 Molino	3505.90	10.17	0.29	3495.73
1.2 Agoyán	780.14	1.08	0.14	779.06
1.3 Pucara	233.53	0.80	0.34	232.73
2. TERMOELECTRICAS	1920.80	97.47	5.07	1823.33
2.1 Vapor	1518.26	91.64	6.04	1426.62
2.1.1. G.Zevallos	s 858.38	41.00	4.78	817.38
2.1.2. Esmeraldas	s 659.88	50.64	7.67	609.24
2.2 Combus Inter	. 128.85	4.21	3.27	124.64
2.2.1 Guangopolo	128.85	4.21	3.27	124.64
2.3 Gas	273.69	1.62	0.59	272.07
2.3.1 Sta. Rosa	212.23	0.62	0.29	211.61
2.3.2 Gas 4	61.46	1.00	1.63	60.46
3.TOTAL	6440.37	109.52	1.70	6330.85

^{1§}Informe de resultados de operación del SNI, DOSNI, Quito, Marzo 1996

CENTRALES TERMICAS DE INECEL CONSUMO DE COMBUSTIBLE (mls-glns)¹⁶

PERIODO ENERO-DICIEMBRE AÑO 1995

NΩ	CENTRAL		BUNKER	DIESEL	RENDIM.
	NOMBRE	TIPO	(mls-gln)	(mls-gln)	BRUTO
				(Kwh/Gln)
1.	Gonzalo Cevallos	Vapor	63955.59	47.10	13.41
2.	Esmeraldas	Vapor	42215.04	46.92	15.61
3	Guangopolo	C.I.	7484.49	170.14	16.83
4	Santa Rosa	Gas		226408.44	9.39
5	Gonzalo Cevallos	Gas		6672.54	9.21
TOT	AL		113655.12	29545.14	13.41

 $^{^{\}rm l6}$ Informe de resultados de operación del SNI, DOSNI, Quito, Marzo de 1996

32
PRODUCCION DE ENERGIA NETA DE INECEL
ENERO-DICIEMBRE 1995¹⁷

CENTRAL	н ж н	%
1. HIDROELECTRICAS		
Molino	3495.73	55.22
Agoyán	779.06	12.31
Pucará	232.73	3.68
SUBTOTAL	4507.52	71.20
2. TERMOLECTRICAS		
Vapor G. Zevallos	817.38	12.91
Vapor Esmeraladas	609.24	9.62
Bunker Guangopolo	124.64	1.97
Gas Santa Rosa	211.61	3.34
Gas G. Zevallos	60.46	0.96
SUBTOTAL	1823.33	28.80
TOTAL	6330.85	100.00

¹⁷ Informe de resultados de operación del SNI, DOSNI, Quito, Marzo 1996

33

CONSUMO DE COMBUSTIBLES DE INECEL (Miles de Galones) ENERO-DICIEMBRE 1995¹⁸

1995	TOTAL	ENE	FEB	MAR	ABR	MAY	JON	101'	AGO	SEP	OCT	NOV	DIC
Bunker	113655	11954	11753	12993	10098	9778	5788	4574	9302	12944	10780	5542	8149
Diesel	29545	2012	2313	4179	2622	2175	293	216	3586	3023	3065	2476	2585
JATOT	143200	13966	15066	17172	12720	11953	6081	4790	12888	15967	13845	8018	10734

 $^{^{18}\,} Informe$ de resultados de operación de SNI, DOSNI, Quito, Marzo de 1996

El sector eléctrico, desde la creación del Instituto Ecuatoriano de Electrificación, ha brindado un aporte sustancial al desarrollo del país y al bienestar de la población.

Se puede verificar esta aseveración al observar el Cuadro No.1 y los gráficos Nos.1 al 7, de los cuales se han obtenido los siguientes parámetros, que corresponden al período 1965-1995:

PARAMETRO	1965	1995	INCREMENTO %	ó
No. abonados	161.000	1'905.000	1.183	
Población servida	878.000	9'122.000	1.039	
Potencia Instalada MW	140,6	2.464,	9 1.753	
Demanda máxima (MW)	116.9	1.665,	0 1.424	
Energía Generada (GMH)	492	8.440	1.715	
Watios/habitante	27	215	796	
KWH/habitante	95	736	775	

Sinembargo, debe anotarse que existe un crecimiento sostenido de los watios por habitante hasta 1983 y posteriormente más bien se nota un decrecimiento irregular hasta 1991 y luego nuevamente se incrementa.

En lo referente a potencia instalada, hidráulica, térmica hay un crecimiento sostenido hasta 1983, luego prácticamente se mantiene igual hasta 1991, y crece en 1992, manteniéndose similar hasta 1995.

Es de señalar que la variación del crecimiento sostenido es coincidente con el inicio de la crisis económica del país de los años ochenta.

A pesar del notable avance del sector eléctrico y la configuración del Sistema Nacional Interconectado, la confiabilidad y seguridad del suministro del servicio se han visto seriamente afectados, toda vez que no se han ejecutado las obras de acuerdo a lo programado.

Es necesario resaltar la importancia que tiene la incorporación en 1995 del Centro Nacional de Control de Energía (CENACE) al Sistema Nacional Interconectado.

El CENACE está ubicado al sur de la ciudad de Quito, junto a la Subestación Santa Rosa y consiste "básicamente de un sistema central y 26 unidades terminales remotas, encargadas de recolectar la información del SNI y enviarla al centro de control a través del sistema de comunicaciones" 19.

Este Centro, permite un manejo seguro del sistema eléctrico, para lo cual realiza varias acciones²⁰, entre las principales están las siguientes:

- Supervisión automática de 400 mediciones relacionadas a las Subestaciones y Centrales de Generación del SNI, como son: voltajes, potencias activas y reactivas, nivel de agua de las represas, obtener la información del SNI; las mismas que se actualizan cada 10 segundos; y que permiten supervisar el estado de estas instalaciones.
- Supervisión de 3000 indicaciones sobre estado de

¹⁹Boletín Técnico №4, Asociación de Ingenieros de INECEL, Quito, 1987.

¹⁰ Información proporcionada por el Ing. Gonzalo Uquillas, técnico del CENACE..

interruptores, seccionadores, activación de alarmas, las mismas que automáticamente se reportan al Centro de Control.

- Mediciones de energía del SNI que se acumulan en forma local y cada 15 minutos son adquiridas y actualizadas por el Centro de Control, y se puede, por ejemplo, conocer qué energía están generando las centrales cada hora, día, etc.

Una de las ventajas del Centro de Control es que puede efectuarse la supervisión en forma remota y maniobrar desde este Centro la apertura o cierre de interruptores, conexión o desconexión de la generación de energía, etc.

El CENACE, permite adicionalmente la implementación del despacho económico de los agentes generadores de energía y convertirse en el administrador del mercado eléctrico mayorista (De acuerdo al proyecto de Ley de Régimen del Sector Eléctrico).

El CENACE marca la proyección en el futuro de la automatización de todo el sector eléctrico, para lo cual se podrá disponer de centros de control en las principales centrales de generación, como son Paute, Agoyán, San Francisco, etc, y en las Empresas Eléctricas, con lo que se logrará optimizar los recursos del sector.

Es de señalar también que, la ejecución del Proyecto del Centro de Control de Energía se vino postergando desde 1980, por razones de índole regional.

Es conveniente resaltar que debido a la política aplicada por el actual Gobierno relacionada a la reducción de personal, a diciembre de 1993 laboraban en INECEL, a nivel nacional 2376 personas, de los cuales: 12 eran directivos, 899 profesionales, 551 administrativos de apoyo, 499 técnicos y obreros calificados y 415 personal de servicio.

A junio de 1996, laboran 1538 personas, de las cuales: 9 son directivos, 538 profesionales, 361 administrativos de apoyo, 413 técnicos y obreros calificados y 217 personal de servicio.

Esta situación de propiciar la salida indiscriminada de personal, el mismo que ha sido altamente capacitado y especializado, especialmente técnico, debilita la capacidad de gestión de la Institución, quedando varias áreas imposibilitadas de ejecutar los trabajos respectivos.

Este hecho indudablemente que representa una pérdida para el país, toda vez que el personal técnico, en un gran porcentaje, estará limitado a trabajar en elsector privado, en actividades que no están de acuerdo a la especialización que le ha dado la Institución.

CAPITULO VI

6.1 CAUSAS DEL DIFERIMIENTO DEL PLAN

Es conocido que todo proyecto hidroeléctrico depende en el tiempo de las condiciones hidrológicas y de diseño para su funcionamiento.

El sistema eléctrico ecuatoriano en las épocas las estiaje que corresponden a los meses de noviembre hasta marzo, es altamente vulnerable a los problemas de racionamiento de energía eléctrica, toda vez que en estos períodos las condiciones de operación del equipamiento hidroeléctrico están disminuídas. Es así como en los períodos de estiaje 1991-1992, 1992-1993 y 1993-1994, la demanda de energía eléctrica fue atendida mediante la operación de todo el parque generador, es decir sin ninguna reserva²¹.

Conforme se indicó en el Capítulo 4, en las actualizaciones del Plan de Electrificación realizadas a partir de 1991 se alertó sobre la situación energética deficitaria que se produciría en las épocas de estiaje, situación debida principalmente al diferimiento de la ejecución de la central hidroeléctrica Daule- Peripa, la falta de un adecuado mantenimiento de las centrales térmicas del S.N.I. y de los Sistemas Regionales.

La solución emergente prevista fue la instalación de una turbina a gas de una potencia mínima de 60 MW (en las bases del concurso se estableció la potencia entre 60 y 90 MW), en un plazo total no mayor a dos años.

²¹Crisis del Sector Eléctrico, Ing. Oscar Marín, Quito, 1994 (Artículo elaborado para el Colegio de Ingenieros Civiles de Pichincha)

En diciembre de 1992 se adjudicó esta central para ser instalada en la ciudad de Guayaquil en la Subestación Pascuales.

En octubre de 1993 se firmó el contrato para la construcción e instalación de una central termoeléctrica a vapor de 125 MW para instalarse en la Isla Trinitaria de la ciudad de Guayaquil, con un plazo total de 36 meses. De acuerdo al avance de los trabajos, esta turbina entrará a operar en octubre de 1997.

La ejecución del Proyecto hidroeléctrico San Francisco (230 MW) se ha venido postergando permanentemente.

En la séptima ronda de licitación petrolera se consideró la explotación de gas natural del campo Amistad, en el Golfo de Guayaquil, que permitiría la operación de turbinas por un período de 20 años, por divergencias entre INECEL y la empresa adjudicataria B.H.P. King-Ranch hasta la presente fecha no se llega a ningún acuerdo.

Sobre el incumplimiento del Plan, varios sectores especialmente gremiales advirtieron con anterioridad a las autoridades sobre los efectos que causaría al desarrollo del país²².

Especialmente debido a la carencia de recursos económicos

¹¹En el Boletín de Resoluciones del Directorio de INECEL No. 027/93 del 7 de octubre de 1993, consta que los Colegios Profesionales de Ingenerieros Eléctricos y Electrónicos del Ecuador, Ingenieros Civiles del Ecuador e Ingenieros Mecánicos de Pichincha, ante el Directorio de INECEL expusieron, entre otros aspectos, "que comparten la posición del Gobierno en el cambio del marco jurídico que permita la participación del sector privado, pero en todo caso se debe poner en práctica el Plan Maestro de Electrificación aprobado por la Presidencia de la República, ya que los proyectos deben cumplirse en los plazos establecidos para evitar desabastecimientos".

se ha producido diferimientos de los proyectos programados en el Plan Maestro de Electrificación, aunque la no ejecución de la central térmica de 90 MW a ser instalada en Guayaquil, se puede derivar de la política del Gobierno Nacional de esperar que el sector privado sea el que invierta en la generación para cubrir la demanda.

Debido a criterios vertidos por varios sectores de la sociedad e inclusive del mismo ex-gerente de INECEL, Ingeniero Iván Rodríguez, se colige que la responsabilidad de esta situación principalmente recae sobre las autoridades del CONADE que intervinieron en la decisión de negar la prioridad de este proyecto.

CAPITULO VII

7.1 LA CRISIS DE 1995^{23}

Conforme a los señalado en capítulos anteriores, para el año de 1995, el sector eléctrico no contaba con la reserva de energía para cubrir la demanda en épocas de estiaje.

7.1.1 HIDROLOGIA

En el año de 1995, en la cuenca del Río Paute en la que se encuentra ubicado el proyecto hidroeléctrico del mismo nombre (1075 MW), se produce una disminución dramática de caudales y que corresponde al año más seco ocasionado en los últimos 32 años (período 1964-1995), siendo el caudal promedio de éste período de 120.7 m3/seg y el caudal máximo de 207.1 m3/seg, que se produjo en el año de 1994.

En agosto de 1995 se produce el caudal medio mensual más bajo de la serie histórica del período 1964-1995. Los meses de septiembre y octubre fueron también bastante secos con caudales de 64,5 m3/seg. y 50,0 m3/seg, respectivamente.

En las cuencas de Pisayambo y Pastaza, en las que se encuentran los proyectos hidroeléctricos Pisayambo (76 MW) y Agoyán (150 MW), también se producen caudales bien bajos; en la de Pisayambo se tiene un caudal medio anual de 5,3 m3/seg y para la del Pastaza de 84,8 m3/seg.

¹³ Informe de resultados de operación del SNI, DOSNI, Quito, Marzo 1996

7.1.2 GENERACION TERMOELECTRICA

El aporte de generación termoeléctrica de las Empresas Eléctricas fue menor a lo previsto en el programa de operación de 1995.

El aporte de Electroquil y Electroquito en el segundo semestre de 1995, fue de apenas 33 MW, siendo la capacidad instalada de 108 MW y el valor más bajo se produjo en el mes de diciembre de 11,5 MW.

7.1.3 ENERGIA NO SUMINISTRADA

La energía no suministrada desde el Sistema Nacional Interconectado al usuario final fue de 540,4 Gwh, valor que ha sido obtenido mediante los resultados contenidos en el cuadro $N\Omega$ 12, de acuerdo al siguiente detalle:

Marzo (10,7 Gwh), Abril (29,0 Gwh), agosto (114,9 Gwh), septiembre (92,1 Gwh), octubre (143,5 Gwh), noviembre (61,9 Gwh) y diciembre (88,2 Gwh).

Esta situación ocasionó que en el año de 1995 se hayan producido racionamientos de energía eléctrica durante 128 días.

El racionamiento para las provincias del norte, Carchi e Imbabura fue diferente que en las otras provincias del país.

Debido al Convenio suscrito entre la Empresa Regional del Norte (EMELNORTE) y Colombia para la compra de 7 MW de 9 am a 9 pm., el racionamiento en 1995 fue mínimo entre agosto, septiembre y octubre; en noviembre no hubo racionamiento debido a la generación proporcionada principalmente desde

el Proyecto Paute, y en diciembre se produjo racionamientos debido a retraso en la suscripción de un nuevo Convenio con Colombia 24 .

 $^{^{14}\,\}mbox{Información proporcionada en el Centro Nacional de Control de Energía (CENACE).}$

7.2 PERDIDAS ECONOMICAS Y SOCIALES PARA EL PAIS

7.2.1 COSTO SOCIAL

Este racionamiento produjo múltiples efectos en el país, como son por ejemplo: perjuicios causados en los hogares por daños de equipos eléctricos, suspensión del servicio de agua potable, pérdidas en alimentos que requieren refrigeración, disminución de la productividad en general, pérdidas a la industria, al comercio, la banca, empresas públicas y privadas, disminución de horas de trabajo en fábricas y empresas, molestia en la ciudadanía por la carencia de este servicio, etc.

Todos los sectores sociales se pronunciaron sobre el impacto de estos racionamientos.

En referencia a la incidencia de esta crisis, varias organizaciones manifestaron sus criterios, el Colegio de Ingenieros Eléctricos y Electrónicos del Ecuador indicó que la pérdida para el país es de 19 mil millones de sucres diarios (El Universo 15 de agosto de 1995). La Cámara de la Pequeña Industria de Pichincha señaló que "...sus efectos han sido realmente devastadores, y que los casi cinco meses de racionamientos han causado pérdidas a la pequeña y mediana industria nacional del orden de 400 mil millones de sucres, lo que ha llevado al cierre de aproximadamente 500 empresas del sector y a una desocupación de aproximadamente 30 mil trabajadores. Es criticable desde todo punto de vista que por más de tres años no se haya adoptado ningún programa ni ninguna medida para prevenir una crisis que más temprano que tarde tendría que ocurrir, no habiéndose invertido ni un solo centavo en infraestructura eléctrica probablemente por la expectativa de una privatización y futura venta del sector eléctrico, con lo que se ha puesto en juego y en grave riesgo la misma estabilidad económica del país"²⁵

Este gremio también amenazó inclusive con no pagar impuestos correspondientes al IVA y otros tributos.

Estos hechos ocasionaron graves pérdidas económicas para el país, pérdidas que son difíciles de cuantificar en detalle, pues no existe una evaluación de autogeneradores, de los grupos adquiridos por los usuarios, el ahorro obligado de energía, subsidio de combustible, etc.

Sinembargo, existen estimaciones a nivel internacional que nos permiten tener un acercamiento a ciertas estimaciones, que son orientadoras para tener un criterio de lo que representa a un país el costo de la demanda de energía eléctrica insatisfecha.

La valoración del kwh restringido depende en general del grado de industrialización de un país. En Colombia por ejemplo se toma un rango para varios sectores productivos entre US \$0,50 y US \$0,80. Brasil tiene valores que van hasta US \$1,80 el kwh.

En vista de que el Ecuador tiene menor grado de industrialización que Colombia, se asume que el costo social de la restricción de energía²⁶ es de US \$ 0,60 por cada Mwh, siendo la restricción en 1995 de 540MWH, el costo para el Ecuador es de:

US $\$ 0,60 \times 540 \times 1,000.000 = US \$ 324,000.0000,00$

²⁵Boletín No. 048, Cámara de la Pequeña Industria de Pichincha, Quito, 1995.

¹⁶Costo Social de la restricción de energía, informe para la CIER, Ing. Hernán Campero, Quito, 1976.

Es decir es un valor equivalente a lo que se requiere para construir el Proyecto hidroeléctrico Paute-Mazar.

7.2.2 MEDIDAS EMERGENTES

El Gobierno Nacional a través de INECEL, ante los racionamientos que fueron conocidos con anterioridad a lo señalado y por la presión especialmente de las Cámaras de la Producción, tomó varias medidas, como es la negociación con las empresas que se indican en el siguiente cuadro, en el que se indica la generación que será incorporada al SNI y considerando la instalación de las centrales de la Trinitaria y de Pascuales, que fueron previstas por el Instituto:

NUEVA GENERACION QUE SE INCORPORARA AL SISTEMA NACIONAL INTERCONECTADO²⁷

EQUIPANIENTO	ИÕ	Pote	ncia(NW) Costos ((08\$)	19	azo	Fecha	Hras Anu	al Rend	lim. Lugar
	Oni.	Nomi	nal	Efect. Pot	enc.	Energ. Ca	ntrac	. entrada	de Opera	c. Kwh/	gal. Insta-
		Un.	Total			(m	eses) en Oper	. compre	omet.	lación
Grupos mejicanos	3	5.5	16.5	15.00	-	-	-	Dic/15/95		_	Mahah
Electroquito	2	80	160	148.00	12	0.003	60	fin/feb/96	5200	12.86	Pascuales
Electroquil	2	40	80	75.20	12	0.0045	60 f	in/feb/96	5200	14.00	V.Costa(4)
Seacoast	1	40	40(1)	36.00(26)	-	0.05	6 E)ic/15/95	3500	10.00	Sta. Elena
	1	110	110(1)	99.00(2)	-	0.05	6 E	ic/30/95	3500	10.00	Sto.Dmingo
Emelec	i	40	40	37.60(3)	-	-	-	Dic/8/95	-	_	Gquil(5)
	1	40	40	37.60(3	-	-	-	Mar/23/96	-	-	Gquil(5)
	ſ	13	33	31.35(3)	_	_	_	iun/20/96	_	_	Gquil(5)

- (1) POTENCIA CONTRATADA 120 MW
- (2) OBTENIDA CON UN FACTOR DE 0.9 SOBRE LA POTENCIA NOMINAL
- (3) OBTENIDA CON UN FACTOR DE 0.94 SOBRE LA POTENCIA NOMINAL

¹⁷ Información proporcionada en la Dirección de Planificación de INECEL, 1996.

- (4) A LA ALTURA DE LA CEMENTO NACIONAL
- (5) CENTRAL ALVARO TINAJERO, EN EL SECTOR DEL SALITRAL

A estos valores debe incrementarse la generación que se incorporará proveniente de:

- a) Pascuales T. Gas, 102.5 MW y 92 MW potencia efectiva;
- b) Trinitaria Vapor, 132 MW y 125 MW potencia efectiva; y,
- c) Daule Peripa Hidroeléct. 213 MW (Su ejecución está bajo responsabilidad de CEDEGE y se espera que entre a generar en diciembre de 1999)

De esta información podemos señalar los siguientes aspectos más importantes:

a) INECEL, contando con la autorización emanada mediante Decretos Ejecutivos, negoció directamente con las siguientes empresas : ELECTROQUIL (80 MW), ELECTROQUITO (160 MW), SEACOAST (150 MW) Y EMELEC (hasta 113 MW, de acuerdo al mismo contrato vigente), el suministro de energía eléctrica mediante la generación de grupos termoeléctricos, asegurándoles el mercado y el precio.

En el caso de ELECTROQUIL, el contrato establece que durante 5 años INECEL debe garantizar a esta empresa US \$ 12/kw/mes por tener disponible las máquinas con un factor de planta de 59,36% (es decir aunque no se requiera de esta energía), a éste valor hay que incluir el costo de mantenimiento de US \$ 0,45/kwh, más el precio vigente del diesel (actualmente se entrega a S/.680/galón, es decir que el precio es subsidiado).

Esto representa que la empresa obtiene un valor fijo

de US \$960.000,00 mensuales, hecho que le permite recuperar la inversión en un plazo de alrededor de dos años y medio.

Por otra parte, las tarifas de energía eléctrica permanecen congeladas desde el 11 de mayo de 1993 (Resolución de Directorio No.051).

El costo medio de la tarifa que INECEL vende a nivel de Subestación a las empresas es de S/ 85,00 y a nivel de usuario de S/ 135,00.

El costo medio real de la tarifa a nivel de Subestación es de S/120,00 y al usuario es de S/ 227,00

El costo real de la tarifa que ELECTROQUIL aplica a INECEL es de US \$ 0,0522 kwh (a la fecha, en sucres sería de S/.164,00).

Es decir que INECEL, en las condiciones actuales debe perder S/. 79,00 por cada kwh que entrega a las empresas eléctricas, perjudicándose aún más la situación financiera de la Institución.

- b) Mediante convenio con México, se instalaron dos grupos móviles de 15 MW en total.
- c) Hasta la fecha no se efectiviza el contrato con ELECTROQUITO y SEACOAST.

7.3 EFECTOS DEL DIFERIMIENTO DEL PLAN EN EL PERIODO 1992-1995

Los efectos del diferimiento del Plan Maestro de Electrificación se pueden señalar únicamente para el período que fue analizado y en el que se evidenció su incumplimiento por la crisis energética del año de 1995.

Para el futuro es indudable que este diferimiento produzca un impacto económico por la desoptimización del plan vigente (1994-2010).

Este Plan contiene cinco alternativas (Ver Cuadro 8), en todas ellas por ejemplo se considera la entrada en operación de varios proyectos como son: San Francisco, Turbinas Gas natural, Coca Codo Sinclair, que como se ha visto existe la incertidumbre de su ejecución.

En todo caso, será el próximo Gobierno el que defina las políticas a ser aplicadas en el sector y los proyectos concretos a ser ejecutados. Con estas definiciones se podría realizar evaluaciones sobre el impacto en el costo de la energía del incumplimiento actual del Plan, conforme fue planteado inicialmente en el presente trabajo.

Resumiendo, el diferimiento del Plan causa los siguientes efectos:

- a) Por la energía no suministrada se ha causado al país pérdidas económicas que se estiman en 324 millones de dólares.
- b) Los contratos de emergencia suscritos, exigen el pago a ELECTROQUIL de 13,3 millones de dólares anuales, durante el período de 5 años.

- c) De efectivizarse el contrato con SEACOAST, el Estado deberá pagar valores más altos que los señalados para ELECTROQUIL.
- d) A los valores indicados anteriormente, se debe añadir el incremento de la contaminación ambiental en las zonas de Santo Domingo de los Colorados y Santa Elena.
- e) Concentración de la generación térmica en Guayaquil con la instalación de los grupos de generación de ELECTROQUIL, EMELEC, Pascuales y Trinitaria.
- f) Se produce la desoptimización de la expansión del Sistema de Transmisión y Generación.
- g) Reducción de los ingresos debido a la menor cantidad de energía generada en 1995, contribuyendo con ésto a la crisis financiera causada por los desajustes tarifarios.
- h) Incremento de costos del suministro de energía debido a los incrementos de generación térmica.

A pesar de no haber sido posible cuantificar el "Impacto del Incumplimiento del Plan Maestro de Electrificación en el Costo de la Energía", señalado en el tema de este trabajo, el análisis realizado permite tener un acercamiento a los principales problemas del sector eléctrico y sobre todo las acciones a ser consideradas en el futuro próximo.

CAPITULO VIII

8.1 MARCO LEGAL

La Constitución Política establece en el Art. 46, que uno de los sectores de la economía reservados al Estado es el servicio de "fuerza eléctrica" y que por excepción puede delegar a la iniciativa privada el ejercicio de su actividad, en los casos que la Ley establezca.

La Ley Básica de Electrificación vigente se promulgó mediante Decreto Supremo No.1042 del 10 de septiembre de 1973.

Esta Ley establece que "el suministro de energía eléctrica es un servicio de utilidad pública y es deber del Estado satisfacer esta necesidad mediante el aprovechamiento eficiente de los recursos naturales." y que entre otras atribuciones, le "corresponde al Instituto Ecuatoriano de Electrificación programar, coordinar, ejecutar y supervisar todo el desarrollo de la electrificación del país con la política energética nacional".

La generación, transformación, transmisión, distribución y comercialización de la energía eléctrica es función privativa del Estado, que la ejerce a través de INECEL, quedando facultado también el Estado para celebrar contratos de prestación de servicios y otorgar permisos.

La Ley de Modernización, promulgada en el período del actual Gobierno, tiene por objeto establecer los principios y normas generales para regular la racionalización y eficiencia administrativa, la descentralización, la desconcentración y la simplificación (Art.1) y en el literal c) del mismo artículo señala que, "La prestación de

servicios públicos y las actividades económicas por parte de la iniciativa privada mediante la desmonopolización, la libre competencia y la delegación de los servicios o actividades previstos en el numeral uno de la Constitución Política de la República"

El Reglamento a esta Ley en el Capítulo V se refiere específicamente a las concesiones en el Sector Eléctrico.

En la Reforma a la Ley Básica de Electrificación, publicada en el Suplemento No. 545 del Registro Oficial del 11 de octubre de 1994, entre otros aspectos, en el Art. 1, establece que "El Ministro de Energía y Minas en atención a los previsto en el artículo 28 segundo inciso de la Ley Básica de Electrificación, autorizará la celebración de los contratos de compra venta de energía a INECEL, sin ningún otro requisito. Previa la suscripción de estos contratos, se requerirá, los informes favorables de la Procuraduría y Contraloría General del Estado y, del Ministerio de Finanzas y Crédito Público, cuando signifique egresos de fondos públicos con cargo al Presupuesto Nacional del Gobierno Nacional."

El Art.4 de esta Reforma señala que "Los generadores explotarán sus empresas por su propia cuenta, asumiendo los riesgos comerciales inherentes a tal explotación, bajo los principios de transparencia, libre competencia y eficiencia. Sus operaciones se sujetarán a los respectivos contratos y a las disposiciones legales y reglamentarias pertinentes."

La aplicación de este reglamento ha producido afectaciones al sector, por cuanto las empresas presionan para que se garantice el precio y la compra de energía. 1

8.2 PROCESOS DE CONCESION Y LEY DEL SECTOR ELECTRICO

8.2.1 Proyecto Toachi-Pilatón (171 MW)

Los estudios de este proyecto fueron ejecutados por el INECEL. El Consejo Provincial de Pichincha gestionó para que esta entidad sea la que realice la concesión del Proyecto; en base a ciertos cambios efectuados al proyecto por una empresa consultora local, el Consejo Provincial convocó al proceso de precalificación de firmas para esta concesión.

La convocatoria realizada establecía un <u>período de concesión de 50 años</u>. Este particular fue analizado por el INECEL, determinándose que con ese período de concesión y con las tarifas previstas en el país, el concesionario obtenía ingresos adicionales a sus inversiones y utilidades, por un valor superior a los 400 millones de dólares y que el período de concesión debía ser de alrededor de 20 años.

Ante los cuestionamientos de organizaciones gremiales el Consejo Provincial cambió el plazo de la concesión, indicando que sería de "<u>hasta 50 años</u>"

El Gerente de INECEL de ese entonces en Oficio No. 02373 dirigido a la Asesoría Jurídica de la Presidencia de la República, con argumentos relacionados al Art. 46 de la Constitución de la República, Ley Básica de Electrificación, Ley de Modernización y su Reglamento, señala que la entidad competente para llevar adelante el proceso de precalificación es el Instituto Ecuatoriano de Electrificación.

El ex- Vicepresidente de la República, encargado de Presidencia, el 24 de mayo de 1994 emitió el Decreto 2742, declarando que el Proyecto Toachi-Pilatón se encuentra en excepción casos de previstos en de Modernización. facultando al Consejo Provincial de Pichincha para que realice la concesión del proyecto Toachi - Pilatón.

Este hecho produjo que organizaciones de trabajadores y profesionales demanden ante el Tribunal de Garantías Constitucionales la suspensión del Decreto. Posteriormente el Tribunal declaró que el Decreto del Ejecutivo se enmarcaba en la Ley.

Esta precalificación de firmas se ha venido postergando y hasta la fecha no se concreta.

8.2.2 Proyecto hidroeléctrico San Francisco (230 MW).

El INECEL contando con la aprobación del CONAM, el 29 de junio de 1985, mediante invitación pública internacional promovió la participación de empresas para la precalificación para la concesión de éste proyecto, bajo el sistema BOT (Construir, Operar y Transferir).

El 27 de febrero de 1996, INECEL precalificó a diez consorcios internacionales.

Mediante Oficio UCBP-138 del 3 de abril de 1996 dirigido al Gerente de INECEL, el CONAM manifiesta no estar de acuerdo con las bases de Licitación, por cuanto "Este sistema BOT propuesto en los documentos, se encuentra en total desacuerdo con el criterio del Presidente de la República, expresado en el veto a la Ley del Régimen del Sector Eléctrico aprobada por el Congreso..."

Esta situación está retardando todavía más las previsiones del Plan Maestro y causa preocupación en los inversionistas y empresas internacionales; afectando la imagen de credibilidad del país en estos procesos.

8.2.3 Permisos de generación.

La experiencia de la contratación de generación de energía, en general no ha sido conveniente para el pais, conforme se indicó en los casos de ELECTROQUIL, ELECTROQUITO, EMELEC Y SEACOAST.

El contrato con ELECTROQUITO no se efectiviza a pesar de haberse suscrito el año anterior, es decir cuando existían otras condiciones en el país. Ahora ya no se podría argumentar emergencia para la contratación de este tipo de generadores.

A la fecha INECEL ha concedido varios permisos de generación, siendo los más importantes los de ELECTROCUENCA (240 MW), ELECTROPICHINCHA (240 MW), POLAR ENERGY (300 MW).

Es decir que de entrar a generar estas empresas, la energía térmica se incrementará sustancialmente, la misma que como se indicó en capítulos anteriores es más costosa que la hidráulica y adicionalmente deteriora el medio ambiente.

Esta situación indudablemente tendrá un impacto en el costo de la tarifa en el futuro, pero que al momento no se puede estimar su valoración por la incertidumbre de la ejecución de nuevos proyectos hidroeléctricos y de generación termoeléctrica que realicen las empresas o INECEL.

En lo relacionado a los permisos para generación de potencias de hasta 50 MW, están en trámite 30 solicitudes

(fecha de actualización 26 de abril de 1996), conforme se indica en los cuadros Nos. 7a y 7b.

8.2.4 Ley del sector eléctrico

Sobre este tema, el Gobierno Nacional, desde el año de 1993 ha intentado la promulgación de una Ley que permita la privatización del sector eléctrico, de acuerdo a modelos aplicados en otros países.

4

El Ejecutivo presentó al Congreso un proyecto de Ley del Sector Eléctrico que prácticamente era una copia de la Ley de Argentina y que analizado por varios sectores se determinó que no respondía a las características propias del sector eléctrico ecuatoriano. Este proyecto consideraba la transferencia al sector privado de las actividades fundamentales de INECEL.

Este proyecto tuvo una fuerte oposición, especialmente de organizaciones laborales y profesionales, debido principalmente a que no respondía a las características propias del sector eléctrico ecuatoriano y se tranfería al sector privado los activos de INECEL.

Varios proyectos de Ley fueron presentados por algunas organizaciones como la Asociación de Empleados y Obreros de INECEL, Colegio de Ingenieros Civiles de Pichincha (Básicamente este proyecto considera mantener el patrimonio de INECEL en poder del Estado y abrir al sector privado las inversiones para nuevos proyectos).

El 22 de febrero de 1996, el Cogreso Nacional aprobó la Ley del Sector Eléctrico, la misma que prevé la siguiente estructura (Art. 13):

a) El Consejo Nacional de Electricidad.

- b) El Centro Nacional de Control de Energía.
- c) Las empresas eléctricas concesionarias de generación.
- d) La Empresa Eléctrica de Transmisión; y,
- e) Las empresas eléctricas concesionarias de distribución y comercialización.

El Congreso Nacional aprobó la Ley del Sector Eléctrico, declarando a la energía eléctrica como un bien estratégico, con los alcances para efecto de los problemas económicos del artículo 604 del Código Civil y las disposiciones pertinentes de la Ley de Seguridad Nacional.

Esta Ley prevé en el Art. 30 la Inversión y Participación del Sector Privado, una vez "Constituídas las sociedades anónimas de generación con los activos de propiedad del Estado, procederán a realizar los aumentos de capital social de acuerdo a los requerimientos planificados por la empresa y aprobados por el CONELEC", Consejo Nacional de Electricidad.

La participación accionaria es del 39% para los inversionistas privados, 10% para los trabajadores y el 51% para el Estado.

El Art. 31 establece que la construcción y operación de los nuevos proyectos de generación serán concesionados al sector privado y al final del período de concesión, los bienes y más instalaciones serevertirán en beneficio del Estado, sín costo alguno. Este tipo de concesión se denomina BOT (Construir, Operar y Transferir).

El Ejecutivo vetó parcialmente esta Ley argumentando que "Las concesiones para la construcción de obras en el sector eléctrico se consideran como la concesión de uso de un recurso para la prestación del servicio eléctrico en el

mercado, por lo que los bienes que se utilicen para el desarrollo de lа concesión son de propiedad concesionario. De conformidad a lo señalado en el Art. 45 de esta Ley, la transferencia al final del período de concesión será obligatoria y se hará mediante un concurso público dirigido por el CONELEC, en el que podrá participar el concesionario saliente y otros del sector privado previamente calificados, quienes deberán concesionario saliente, siempre que el nuevo adjudicatario de la concesión sea otro diferente a éste, el valor de reposición a nuevo menos la depreciación acumulada de los activos que sirvieron para desarrollar la concesión. La definición del valor de reposición de tales activos se hará conformidad a 10 que señale el correspondiente reglamento".

Es decir al momento no dispone el sector eléctrico de una Ley que le permita desarrollarse adecuadamente.

Es de resaltar que el veto del Presidente de la República contradice las experiencias positivas que han tenido otros países en la aplicación del sistema de concesión BOT. Este concepto se utiliza ampliamente en Europa y en los Estados Unidos²⁸, muestra de ello son los proyectos: túnel entre Inglaterra y Francia, el gran proyecto de Escandinavia, explotación petrolera del Mar del Norte, proyectos en Malasia, Tailandia, China, Chile, México, Argentina, etc.

¹⁸Concesiones BOT, Dr. Steen Olsen, Revista SIGMA, Colegio de Ingenieros Civiles de Pichincha-Fundación Ecuatoriana de Ingeniería, Quito, 1996.

⁽El Dr. Olsen es miembro del Parlamento, Noruego, experto en Concesiones, Consultor de ONUDI, trabaja para la Comisión de Planificación de la República Popular de China, Asesor en Proyectos BOT. Asesor en Malasia, Tailandia, Laos. Asesor de Contratos petroleros para la exploración del Mar del Norte.)

De acuerdo a la Ley las acciones que INECEL tiene en las empresas eléctricas se transferirán al Ministerio de Finanzas y serán vendidas al sector privado hasta el 39% y 10% de los activos a los trabajadores.

La compra por parte de los trabajadores del 10% de las acciones, parecería que es un engaño, toda vez que es difícil que ellos cuenten con estos capitales.

El Art. 43 establece como requerimiento previo a la convocatoria de licitación pública para la concesión de obras de generación, el Informe Especial de Seguridad Nacional, emitido por el Comando Conjunto de las Fuerzas Armadas, el mismo que también integra el Consejo Nacional de Electricidad (Art.16).

La inclusión de estos artículos es importante, por cuanto las Fuerzas Armadas, constituyen una entidad que garantizaría la transparencia en estos procesos.

CAPITULO IX

9.1 SITUACION FINANCIERA DE INECEL

9.1.1 VENTA DE ENERGIA A EMPRESAS ELECTRICAS

La venta de energía a las Empresas Eléctricas, permanentemente ha causado efectos negativos a INECEL debido a la mavoría de las Empresas no que pagan oportunamente las planillas emitidas por el Sistema Nacional por concepto del suministro de energía eléctrica. Así por ejemplo, al 31 de mayo de 1986 la deuda acumulada era de 4.280 millones de sucres, correspondiendo el 48 % a EMELEC, 13% a la Empresa Eléctrica Quito y el 29 % restante a las otras Empresas²⁹.

Los saldos deudores por venta de energía, considerando hasta la planilla de octubre de 1995 y pagos hasta el 12 de diciembre del mismo año suman un valor total de \$.471.699 millones de sucres, de los cuales \$.287.015 millones de sucres corresponden a EMELEC 30 .

La cartera vencida de las Empresas Eléctricas se traslada a las falta de pago de los usuarios, especialmente con respecto al consumo de las Entidades Públicas y Seccionales, cuya cartera se aproxima a los 80.000 millones de sucres.

El 29 de agosto de 1995, EMELEC y el Estado ecuatoriano

¹⁹Las tarifas del Sistema Nacional, Ing. Arturo Barros, Revista Técnica- Asociación de Ingenieros de INECEL, Quito, 1986.

³⁰ Situación Financiera de INECEL, Dirección de Finanzas, Quito, 1996.

suscribieron un Acuerdo Transaccional, mediante el cual la Empresa debía cancelar a INECEL la suma de 252.780 millones de sucres, por concepto de la compra de energía de años anteriores cortado al 30 de junio de 1995. Al respecto, INECEL está negociando con el Estado Ecuatoriano, a fin de que el Ministerio de Finanzas compense en este valor la deuda externa del Instituto.

9.1.2 SITUACION TARIFARIA

En general, los Pliegos Tarifarios aprobados por el Directorio de INECEL han obedecido a decisiones políticas y no de órden técnico, hecho que ha incidido para que los niveles tarifarios alcanzados hayan sido inferiores a los requeridos por el Sistema Nacional para cubrir los costos de operación y obtener un margen de rentabilidad que permita contribuir a las inversiones requeridas por el sector³¹.

Así tenemos que en el período 1977-1985 las tarifas cubrieron únicamente los costos del servicio, es decir los gastos directos de operación y mantenimiento y las cuotas de depreciación.

Los costos de operación del KWH producido por el Sistema Nacional ha estado influenciado principalmente por el incremento de los costos de los combustibles, las contínuas devaluaciones monetarias y el incumplimiento en el pago de la energía suministrada a las Empresas Eléctricas

En vista de que desde mayo de 1993 las tarifas permanecen congeladas, en mayo de 1995 la Dirección de Tarifas

Las tarifas del Sistema Nacional, Ing. Arturo Barros, Revista Técnica, Asociación de Ingenieros de INECEL, Quito, 1986.

presentó al Directorio de INECEL el estudio sobre la necesidad de efectuar los ajustes correspondientes. El Directorio acogió este estudio y se pronunció por el incremento tarifario en forma inmediata, sinembargo debido a la acción de otros niveles del Gobierno se suspendió dicho ajuste.

Para 1993 los niveles tarifarios³² alcanzaban a un precio medio de 7 centavos de dólar con una tasa de cambio de 2000 sucres/dólar.

Con el incremento del valor de la divisa, a diciembre de 1995, el valor de las tarifas a los clientes finales disminuye a 4,5 centavos de dólar.

Para 1995, el sector eléctrico ecuatoriano tuvo un déficit en la cobertura de sus costos de servicio, en el caso de INECEL fué de 135 mil millones de sucres y en el de las Empresas Eléctricas a 179 mil millones de sucres, lo cual ocasiona una grave afectación a la situación financiera del sector, y que de mantenerse esta situación, el costo del servicio para 1996 será de 509 mil millones de sucres para INECEL y de 765 mil millones de sucres para las Empresas Eléctricas.

Según el estudio de costos y determinación del ajuste tarifario realizado por INECEL, se requiere realizar los siguientes ajustes a los precios medios, según la alternativa que se elija:

¹²La información actualizada sobre costos tarifarios está tomada del documento: Estudio de costos y determinación del ajuste tarifario requerido para el sector eléctrico del Ecuador-año 1996, Dirección de Planificación y Tarifas, Quito 1995.

	INECEL	E M P R E S A S
		ELECTRICAS
	(Sucres/KWH)	
PRECIO ACTUAL	85.14	135.14
COSTO DEL SERVICIO		
Alternativa 1	152.53	233.61
Alternativa 2	92.61	175.27
Alternativa 3	129.08	210.78

9.1.3 OTRAS INCIDENCIAS EN LA SITUACION FINANCIERA.

Existen otros factores que han incidido en la situación financiera de INECEL, como son:

El represamiento de órdenes de pago, cartas de crédito y pagos a contratistas que alcanzó un valor de 44 mil millones de sucres.

La proforma presupuestaria de INECEL estimada para 1996 en S/.1.889 mil millones, por disposición del Frente Económico se reprogramó en S/.1.679 mil millones, pero el Ministerio de Finanzas la disminuyó a S/.1.296 mil millones, considerando inclusive nuevos recortes y ajustes presupuestarios.

CAPITULO X

- 10.1 CONCLUSIONES Y RECOMENDACIONES
- 10.1.1 CONCLUSIONES:
- 10.1.1.1 Los Planes Maestros de Electrificación han permitido disponer de un conjunto de estudios y proyectos que han servido de guía para el desarrollo del sector eléctrico e ir realizando los ajustes correspondientes de acuerdo a las circunstancias presentadas.
- 10.1.1.2. La Planificación realizada por el INECEL no se ha cumplido a cabalidad debido a la situación financiera del sector y a la ingerencia política, poniendo en grave riesgo, especialmente en estos últimos años, a la economía del país.
- 10.1.1.3 La acción de los directivos del CONADE al no conceder la autorización de la contratación de la turbina de 90 MW, repercutió negativamente en la restricción de energía eléctrica en el año de 1995.
- 10.1.1.4 La crisis energética producida en el año de 1995, produjo pérdidas económicas y sociales al país por 340 millones de dólares, cuyas repercusiones seguirán afectando al desarrollo nacional.
- 10.1.1.5 La carencia de una Ley moderna impide al sector seguir desarrollándose en forma apropiada, toda vez que debido a la indecisión del Gobierno de

realizar los estudios y obras requeridas, está propiciando la instalación de centrales de generación térmica que no son las más apropiadas para las condiciones del país, porque el costo de la energía es más alto y además afectan al medio ambiente.

- 10.1.1.6 La autorización de permisos para generación térmica produce afectaciones al costo de la energía y presiona para que los proyectos hidroeléctricos no se realicen, desaprovechando los grandes recursos renovables que dispone el país y adicionalmente condicionan al Estado para que les garantice la compra de energía.
- 10.1.1.7 La grave situación financiera por la que atravieza el INECEL, causada principalmente por los bajos niveles tarifarios y la cartera vencida de las Empresas Eléctricas, impide a ésta Institución cumplir adecuadamente con la programación prevista.
- 10.1.1.8 La indecisión del Gobierno para la contratación de la concesión del Proyecto Hidroeléctrico San Francisco, está causando pérdida de confianza y credibilidad en los inversionistas extranjeros.
- 10.1.1.9 La salida de personal técnico especializado del INECEL ha repercutido en la realización de los proyectos y acciones de esta entidad, especialmente en el área de Planificación y de Ingeniería y Construcción, hecho que limita la ejecución de varios estudios.
- 10.1.1.10 La concesión del suministro de energía eléctrica

dada a la empresa EMELEC ha generado varias irregularidades que han afectado a la economía del Estado y a la calidad del servicio eléctrico en el área de Guayaquil.

10.1.2 RECOMENDACIONES:

- 10.1.2.1 Que el Gobierno y el Congreso Nacional propicien un verdadero debate nacional para la promulgación de una Ley del Sector Eléctrico, que esté de acuerdo a las condiciones del país, la misma que debe propender a la utilización de los recursos naturales renovables y a la inversión extranjera para la construcción de nuevos proyectos.
- 10.1.2.2 Que el Gobierno Nacional decida la ejecución de los proyectos que han sido promocionados a nivel internacional, toda vez que de no concretarse su ejecución se verá afectada la imagen y credibilidad del país, a nivel internacional.
- 10.1.2.3 Que el Gobierno Nacional promueva hacia el sector privado la utilización de los recursos renovables que dispone el país para la generación de energía eléctrica.
- 10.1.2.4 Que las decisiones que adopte el Gobierno Nacional referentes al sector eléctrico, estén fundamentadas en análisis técnicos.
- 10.1.2.5 Que el Gobierno Nacional, a través de INECEL, realice un efectivo control de los contratos de concesión.

- 10.1.2.6 Que el Gobierno Nacional, a través de INECEL continúe realizando los estudios de los proyectos contemplados en el Plan Maestro de Electrificación.
- 10.1.2.7 Que el Gobierno Nacional cumpla con las disposiciones legales para la generación de energía eléctrica a riesgo de los inversionistas.
- 10.1.2.8 Que el Gobierno Nacional, a través del INECEL fortalezca las áreas técnicas del Instituto dotando de los recursos humanos necesarios y evitando la salida de personal especializado.

DESARROLLO HISTORICO DEL SECTOR ELECTRICO PUBLICO

cuadro Nº 1

(DATOS GENERALES)

AÑOS	POBLACION	No.ABON.	POBLACION	POTENCIA	INSTALADA	(Mw)	DEMANDA	ENERGIA	GENERADA	(GWH) 2/	PARAMET.	ELECTR
	TOTAL 1	TOTALES	SERVIDA	HIDRAUL.	TERMICA	TOTAL	MAXIMA	HIDRAUL.	TERMICA	TOTAL	W/HAB	KWH/H
	(MILES)	(MILES)	(MILES)				(MW)					
1965	5.162	161	878	60.4	80.2	140.6	116.9	248.8	243.2	492	27	95
1966	5.33	175	959	81.5	83.2	164.7	127.4	265.5	268.5	534	31	100
1967	5.503	189	1040	91.5	89.3	180.8	145.1	286.5	300.5	587	33	107
1968	5.682	213	1171	88.6	105	193.6	162	309	359	668	34	118
1969	5,865	234	1290	98	110	208	177.3	338	416	754	35	129
1970	6.051	253	1368	99	141.3	240.2	192.5	372.5	449.5	822	40	136
1971	6.24	281	1516	98	166	264	213.5	407	498.5	905	42	145
1972	6.432	305	1640	98.1	186.3	284.4	225.8	408.5	585.5	994	44	155
1973	- 6.629	356	1916	95.6	206.6	302.2	247.3	406.1	673.9	_ 1080	46	163
1974	6.829	398	2138 -	127.1	264.8	391.9	279.7	509	748	1257	57	184
1975	7.035	437	2343	128.5	304.8	433.3	321.5	620	838	1458	62	702
1976	7.243	484	2608	130.6	355.5	485.6	376.8	598	1098	1696	68	234
1977	7.455	537	2900	203.6	457.6	661.2	441	555.1	1452.9	2008	89	269
1978	7.671	594	31 99	211.8	571.3	783.1	500.1	781.7	1598-3	2380	102	310
1979	7.893	651	3512	214.9	598.4	813.3	562.3	699.2	2042.8	2742	104	347
1980	8.123	712	3842	214.9	745.6	960.5	623.1	856	2245	3101	113	382
1981	8.361	783	4247	228.8	827.4	1056.2	692.2	764	2645	3409	126	408
1982	8.409	848	4944	225.2	961.8	1187	745.7	873.1	2950.9	3824	138	444
1983	8.638	904	5226	727.2	954.8	1682	748.1	1688.8	2332.2	4021	190	454
1984	8.868	954	5525	725.1	919.4	1644.5	797.7	3207.2	1012.8	4220	180	463
1985	9.099	1022	5832	736.6	919.4	1656	8.668	3254	1295.9	4549	177	435
1986	9.33	1089	6158	736.6	919.4	1656	939.9	3977.9	997.1	4975	172	516
1987	9.562	1160	66493	892.6	919.4	1812	1012	4544.8	845.9	5391	183	543
1988	9.795	1230	6837	897.7	842.4	1740.1	1057.2	4801	831	5632	178	575
1989	10.029	1309	7202	897.7	842.2	1739.9	1126.4	4934	836	5770	173	575
1990	10.264	1405	7575	896	821.5	1717.5	1240.9	4988	1373	6361	167	620
1991	10.502	1498	7866	895.6	830	1725.6	1339.6	5077	1911	6988	164	665
1992	10.741	1586	8174	147.1	823.8	2294.8	1365.3	4974	2236	7210	214	671
1993	10.981	1685	8510	1472.5	823.4	2295.9	1469.3	5810	1613	7423	209	676
1994	11.221	1789	8820	1480	932.3	2412.3	1625.9	6566	1551	8117	215	723
1995	11.46	1905	9122	1497.3(*)	1247.6(*)	2734.9(*9)	1665	6826	1614	8440	239(*)	736

FUENTE: DIRECCION DE PLANIFICACION DE INECEL

(*) DATOS A JUNIO DE 1996

ELABORACION: H. FLORES

68

CUADRO Nº 2

POTENCIAL HIDROELECTRICO DEL PAIS

VERTIENTE DEL PACIFICO

CUENC	AS HIDROGRAFICAS	A.	REA		TENCIAL FORICO		POT. TEC. PROVECHA		POT. ECON.
COLINC	AD HIDROGRAFICAD	(1	(m2)				MW *		nw *
1	MIRA	б	022	2	887,2		488,5		0,0
2	ESMERALDAS	21	418	7	530,4	1	878,5	1	194,0
3	GUAYAS	32	675	4	204,7		310,7		0,0
4	CAÑAR	2	462	1	338,6		112,2		0,0
5	JUBONES	4	326	1	122,7		687,1		590,0
6	PUYANGO	4	965		960,9		298,7		229,0
7	CATAMAYO	11	012	1	085,9		459,6		0,0
SUBTO	TAL	82	880	19	130,4	4	235,3	2	013,0
				VER	PIENTE	DEL A	AMAZONAS		
	NADO GOGA	<u>سر</u>							C40 0
8	NAPO-COCA NAPO-NAPO						355,0 929,5		839,0
9	PASTAZA		543				434,0		
10	SANTIAGO-NAMANGOZA SANTIAGO-ZAMORA		321 806		259,7 395,5		810,6 857,6		006,0 401,0
11	MAYO SUBTOTAL TOTAL	83	720 018 898	54.	733,9 259,3 380,7	26			500,0 507,0 520,0
	· · · ·				,		. = - / -		

No incluye los proyectos de mediana y pequena capacidad.

CATALOGO DE CENTRALES GRANDES (111 pagger 405)

МŌ	HOMBRE DEL	NOMBRE DEL	NOMBRE	CAUDAL	CAIDA	POTENCIA
	PROYECTO	RIO	DE LA CUENCA	90%	PONT.BRUT	INSTAL.
				m3/s	•	HW
1	QUININDE	ESMERALDAS	ESMERALDAS	234,4	22,0	83
2	PALMA REAL	GUAYLLABAMBA	ESMERALDAS	52,2	241,0	152
3	CHESPI	GUAYLLABAMBA	ESMERALDAS	29,6	278,5	167
4	VILLADORA	GUAYLLABAMBA	ESHERALDAS	74,1	175,0	300
5	CHONTAL	GUAYLLABAMBA	ESMERALDAS	77,3	61,0	95
6	TOACKI-PILATON	TOACHI	ESMERALDAS	36,4	293,0	165(1)
7	TOACHI-PILATON	TOACHI	ESHERALDAS	36,4	312.0	300
8	MINAS	JUBONES	JUBONES	29,8	735,5	350
9	CHARCALONA	JUBONES	JUBONES	14,7	736,0	175
10	LOYOLA	LOYOLA	MAYO	18,9	482,0	146
11	YACARA	MAYO	NAYO .	101,8	122,0	206
12	COCA	COCA	NAPO	250,3	51,0	152
13	CODO SINCLAIR	COCA	NAPO	181,1	621,0	983
14	IUHAUH	HUAHUI	NAPO	17,8	976,0	202
15	CLAVADERO	HUALARINGO	NAPO	16,4	2897,0	242
16	MACHACUYACU	MACHACUYACU	NAPO	37,1	621,0	366
17	CATACHI	MULATOS	NAPO	73,4	438,0	720
18	AHUANO	NAPO	NAPO	672,6	47,0	486
19	VALLEVICIOSO	VALLEVICIOSO	NAPO	17,4	754,0	266
20	CEDROYACU	VERDEYACU	NAPO	27,7	768,0	250
21	VERDECHICO	VERDECHICO	NAPO	144,6	480,0	1120
22	CHAM80	CHAM80	PASTAZA	34,7	345,4	240
23	LLIGUA NUYO	PASTAZA	PASTAZA	57,5	168,5	100
24	TOPO(S.FCO.)	PASTAZA	PASTAZA	126,9	128,0	230
25	CHIGUAZA	PASTAZA	PASTAZA	272,2	33,0	105
26	SAN FRANCISCO	PASTAZA	Pastaza	74,1	218,3	210
27	PUYANGO	PUYANGO	PUYANGO	50,0	349,0	132
28	CASCABEL	ABANICO	SANTIAGO	22,8	706,0	191
29	NAIZA	NAMANGOZA	SANTIAGO	458,0	123,0	840
30	HEGRO	NEGRO	SANTIAGO	28,9	278,7	90
31	SOPLADORA	PAUTE	SANTIAGO	69,5	331,0	316
32	SOPLADORA*	PAUTE	SANTIAGO		331,0	424
33	CARDENILLO	PAUTE	SANTIAGO			518
34	CARDENILLO*	PAUTE	SANTIAGO	96,4	446,0	698
35	MAZAR	PAUTE		-	136,8	
36	INDANZA				97,5	613
37	SAN MIGUEL*		SANTIAGO		103,0	656(2)
38	SAN ANTONIO≭		SANTIAGO	-		
39	GUALAQUIZA		SANTIAGO	•	73,0	566(1)
40	GUALAQUIZA(G6)		SANTIAGO	•	99,9	603
41	EL RETORNO	ZANORA	SANTIAGO			312

Centrales con caudales integrados con proyectos aguas arriba.

Valor de PM

Nuevos estudios de la cuenca del Zamora.

CATALOGO DE CENTRALES MEDIANAS

				•		
HΩ	NOMBRE DEL	NOMBRE DEL	PROVINCIA	CAUDAL		OTENCIA
	PROYECTO	RIO		90%	HETA	KW
				#3/s		
1	ABITAGUA (C)	PASTAZA	PASTAZA	134,30	42	68000
2	ALAMBI (S)	ALAMBI	PICHINCHA	3.14	245	6158
3	ALLURIQUIN (S)	TOACHI	PICHINCHA	38,70	110	34132
4	ANGAMARCA (C)	ANGAMARCA	COTOPAXI	6,83	229	50000
5	APAQUI (C)	APAQUI	CARCHI	4,08	527	36000
6	80MBUSCARA (S)	80MBUSCARA	ZAMORA-CHIN	4,47	433	15507
7	CALDERON (S)	GUAYLLABAMBA	PICHINCHA	18,00	238	34309
8	CALICHE (S)	CALICHE	INBABURA	38,80	107	33365
9	CALUMA (C)	CALUNA	BOLIVAR	3,00	124	12000
10	CUYES (C)	CUYES	MORON-SANT.	14,18	163	28562
11	CHOTA (S)	CHOTA	CARCHI	18,80	210	31610
12	GUARUMAL (S)	TOACHI	COTOPAXI	5,07	297	12047
13	INTAG	INTAG	INBABURA	16,40	150	19695
14	JATUNYACU	JATUNYACU	NAPO	292,40	28	67868
15	LA UNION	JUBONES	EL ORO	19,20	183	37000
16	LAS JUNTAS (S)	TOACHI	COTOPAXI	8,00	251	16077
17	LOS BANCOS (S)	8LANCO	PICHINCHA	19,04	171	26042
18	LUCARQUI (S)	CATAMAYO	LOJA	10,30	75	6156
19	MILPE (S)	8LANCO	PICHINCHA	18,06	129	28755
20	MINDO (C)	# ODMIN	PICHINCHA	15,69	70	13595
21	N. TARQUI (C)	CUYES	MORONA S.	35,08	240	67304
22	OÑA (S)	0ÑA ***	AZUAY	4,65	515	19178
23	PAPALLACTA (S)	PAPALLACTA	NAPO	4,75	248	9432
24	PARAMBAS (S)	MIRA	CARCHI	40,25	89	2867 8
25	PILALO 3 (C)		COTOPAXI	4,92	274	10782
26	PILATON S.ANA(C)	PILATON	PICHINCHA	16,68	270	36039
27	PILATON-YAM8 (S)	PILATON	PICHINCHA	4,40	302	10645
28	PUELA 2 (S)	PUELA 2	CHIMBORAZO	4,42	255	9010
29	PTO.MISAHUALLI	MISAHUALLI	NAPO	113,80	41	57130
30	RIO LUIS (C)	RIO LUIS	EL ORO	2,13	290	15000
31	SABANILLA (S)	SABANILLA	ZAMORA-CHIN.	7,20	290	17760
32	SANTA ROSA (C)	QUIJOS	NAPO	169,23	50	67491
33	SAN PABLO (C)	HOLLIN	NAPO	106,31	69	58342
34	SHINCATA (C)	SHINCATA	AZUAY	3,40	267	14361
35	SIGCHOS (S)	TOACHI	COTOPAXI	4,36	313	11054
36	SOÑADEROS (S)	ZAMORA	ZAMORA-CHIN	26,80	67	15260
37	SUCUA (S)	TUTANANGOZA	MORONA-SANT	42,46	100	33987
38	TISAY (C)	CAÑAR***	CAÑAR	9,10	154	11230
39	UNDUSHAPA 1 (S)	UNDUSHAPA 1**	AZUAY	4,15	286	9505
40	UNDUSHAPA 2 (S)	UNDUSHAPA 2**	AZUAY	4,22	237	8004
41	UNDUSHAPA 3 (S)	UNDUSHAPA 3**	AZUAY	4,15	258	8562

^{*} Con trasvase del Cinto y Solaya

^{**} Con trasvase del Shincata y Udushapa

^{***} Con trasvase del Shincata

^{****} Se genera en dos centrales

⁽C) = con reservorio

⁽S) = sin reservorio

CUADRO NO 5

CATALOGO DE PEQUEÑAS Y MINI-CENTRALES

ΩH	NOMBRE DEL Proyecto	NOMBRE DEL RIO	PROVINCIA	CAUDAL 90%	CAIDA NETA	POTENCIA KW m3/s
1	BLANCO	8LANCO	CHINBORAZO	1,30	290	3000
2	CAROLINA	SAN JERONIMO	IMBABURA	0,65	87	407
3	CHAUCHA	MALACATOS	AZUAY	0,20	120	170
4	CHICAL	BLANCO	CARCHI	1,05	35	260
5	CHIRIBOGA	MAQ. VIEJA	PICHINCHA	0,15	139	130
6	GOALTAL	GOLONORINAS	CARCHI	0,81	21	122
7	LITA	BLANCO	IMBABURA	4,50	60	1820
8	MANU	HUAPAMALA	LOJA	0,40	100	295
9	M.J.CALLE	CAÑAR	CAÑAR	10,00	18	1440
10	MOLLETURO	UTUL-SITICAY	AZUAY	0,25	90	168
11	OYACAHI	S.N.	NAPO	0,10	60	42
12	RIO LUIS	LUIS	EL ORO	1,70	45	544
13	S.CARLOS LIMON	YACUTAZA	MORONA S.	2,14	22	348
14	SAN VICENTE	SAN VICENTE	CAÑAR	1,13	60	487
15	YACUAMBI	CAMBANA	ZAMORA CHIN.	1,50	30	340 9573

PROYECTOS DE GENERACION CONSIDERADOS PARA EL DESARROLLO FUTURO

PROYECTOS HIDROELECTRICOS	POTENCI (HM)	A AÑOS Constr		FECHA TEMPRANA POSIBLE ENTRA EN OPERACION
Mazar	180	6	Diseño Lici	
Chespi	167	5	Factibilida	• • • • •
San Francisco	230	5	Factibilida Onefontibil	•
Sopladora Villadora	400	6	Prefactibil	•
	300	6	Factibilida	•
Toachi	300	6	Diseño Lici	•
Minas	350	6	Factibilida	d octubre/1998
Marcabelí	. 155	6	Prefactibil	. octubre/2001
Lligua-Muyo	100	4	Inventario	octubre/2002
Chambo	240	4	Inventario	octubre/2002
Cardenillo	700	5	Inventario	octubre/2003
Gualaquiza	1000	5	Prefactibil	. octubre/2001
Codo Sinclair	491	8	Prefactibil	. octubre/2002
Недго	90	5	Inventario	octubre/2003
Cascabel	280	4	Inventario	octubre/2002
El Retorno	280	5	Inventario	octubre/2003
San Miguel	1600	8	Inventario	octubre/2006
San Antonio	760	7	Inventario	octubre/2005
Cedroyacu	250	6	Inventario	octubre/2004
Catachi	720	7	Inventario	octubre/2005
Haiza	840	8	Inventario	octubre/2006
Verdeyacuchico	1120	8	Inventario	octubre/2006
PROYECTOS				
TERMOELECTRICOS				
Turbogas-Diesel	25	2		octubra/1994
Turbogas-Diesel	45	2		octubre/1994
Turbogas-Diesel	60	2		octubre/1994
Vapor-Bunker	125	4		octubre/1994
Vapor-Bunker	300	4		octubre/1994

^{1.} Estas fechas se han determinado en base al Gráfico Nº1 elaborado en enero de 1988, tomando como referencia para la contratación de los estudios y construcción de los proyectos el mes de enero de 1989.

1	- ``` ``	LICITED	EMPRESA	TIPO DE CENTRAL	Mw	UBICACION DE	TIPO DE S	SERVICIO	RESPO	STA	PERM	<u>ean</u>
î	FECHA	∑-10°	SOLICITANTE	(COMBUSTIBLE)		LA CENTRAL	PUBLICO	PRIVADO	FECHA	⊊ No.	″Tlpe	Obs.
1	01/nov/95	\$ n	CHARAPANO	TERMO-RESIDUO	15.00	?	✓		27/cic/95	05780	P	A60
2	06/nov/95	\$n	MOLINOS LA UNION	HIDROELECTRICA	1,20	CAYAMBE		✓	27/cic/95	05972	P	сом
3	07/nov/95	TT.	ENERGY WIND/PGT	EOLICA/SOLAR	9.20	GALAPAGOS	✓		27/eic/95	05965	P	COMI
4	07/nov/95	S/N	QUALITEC	HIDROELECTRICA	10.00	PILALOPUJILI		?	27/dic:95	05967	P	AGG
5	10.nov/95	sn .	ENERGEL	TERMOELECTRICA	50.00	GUAYAS	✓		27/dic/95	05973	P	A60
6	10/nov/95	SE	EOUIPAIN/IGENUNSA	TERMO-DIESEL	50.00	ESMERALDAS	✓		27/dic/95	05971	P	A60
7	17/nov/95	234	ENRON-ANP	TERMO-RESIDUO	90.00	SUCUMBIOS		✓	27/dic/95	05978	P	A60
8	21/nov/95	\$11	ELECTROAMAZONAS	TERMO-RESIDUO	40.00	COCA/JIVINO	√		27/dic/96	05977	P	COM
9	22:nov/95	s n_	EERCS	HIDROELECTRICA	35.00	OCAÑA/CAÑAR	<u> </u>		28/enc/96	05000	P	СОМІ
0	23/nov/95	STI.	TECNOPAPEL	TERMO-DIESEL	3,60	COTOPAXI	V	√	27/dic/95	05976	P	COMI
11	21/pov/05	3 'n	EMELINSA	HIDROELECTRICA	48.00	INTAG/IMBABURA	✓		27/sic/95	05996	P	ACOM
12	13/dic/95	T2	ECUAMINING	TERMO-DIESEL	4.92	ZAMORA/CHINCHIPE		✓	16/mc/96	00272	P	ADAJ
13	13/die/95	g/2	ETECO	GEOTERMICA	50,00		√		17/cne/96	00334	P	ACOM
14	19/dic/95	951285	EEQSA	HIDROELECTRICA	40.00	QUIJOS/SUCUMBIOS	✓		16'feb:96	905	- p	Ī
15	19/die 95	s/n	ELECTROCUENCA	HIDROELECTRICA	12,00	SHINCATA/AZUAY	✓		16/feb/96	80903	P	ACOM
16	27/dia/95	GG002368	EMELGUR	HIDROELECTRICA	50.00	ANGAMARCA/COTOPAXI	✓		02/fcb/9s	00563	p	ACOM:
17	28. dic 95	10020-95	CONCANAL	HIDROELECTRICA	20.00	CUYUJA	✓		17/cne/96	G9333	P	COYU
13	11/mar/95	059	AZOGUES	HIDROELECTRICA	15.30	DUDAS-MAZAR	1		24/abr/96	02179	PEN	T

 TOTAL TERMOELECTRICO
 253.52

 TOTAL HIDROELECTRICO
 231.50

 TOTAL EOLICO
 9.20

 TOTAL GEOTERMICO
 56.09

 TOTAL GENERAL
 544.22

PERMISO TIPO: P. PROVISIONAL; D. DEFINITIVO; PEN: PENDIENTE; N. NEGATIVO

CESERVACIONES: A60: Ampliación del permiso provisional por 60 días; COMI; Documentación para análisis de Comisión Especial; RGG; Preparada la revocatoria para firma de gerencia; ADAJ: Ampliación consultada a la DAJ; ACOMI: Ampliación para análisis de Comisión Especial; AGG: Ampliación para firma de Gerencia; RGG*: Revocatoria preparada para firma de Gerencia y pendiente informe de DAJ.

Nota: Este cuadro se irá actualizando de acuerdo a la contestación correspondiente de cada solicitud

Fecha de actualización: 26/abr/96

٥.	SO SO	LICITUD	EMPRESA	TH'G DE CENTRAL	Mw	UBICACION DE	TIPO DE S	ERVICIO :	RESPE	STA	PERM	uso
Γ	FECHA	No.25000	SOLICITANTE	(COMBUSTIBLE)		LA CENTRAL	PUBLICO	PRIVADO	FECHA ;	No.	Tipe	2dO
19	17/nov/95	₽n	ELECTROCUENCA	HIDROELECTRICA	20.00	ТОМЕВАМВА	√		16/ene/96 \$	90273	N	
20	17/nov/95	£73	ELECTROCUENCA	HIDROELECTRICA	20.00	TAMBO/CAÑAR	✓		16/me/96 Å	20273	N	
21	22/nov:95	2.00	INGENIO LA TRONCAL	TERMO-DIESFL	12.50	LA TRONCAL	✓		27/dic/95	05779	P	RG
22	23/nov/95	ET0029	EL TOPO	TERMO-RESIDUO	15.00	PASTAZA/TUNGURAHUA	V		27/cic/95	25966	P	RG
23	29/nov/95	5/71	ECOORIENTE	TERMO-DIESEL	42.00	SUCUMBIOS/NAPO	√		16/ene/96	96277	PEN	RG
24	11/dic/95	129	EAPAM	TERMO-DIESEL	1.00	MANTA	1		16/ene/98	00277	PEN	RG
25	22/dia/95	Cl.A-ab 1-1-95-001	CONSORCIO LUZ DE LA AMAZONIA	TERMO-RESIDUO	50.00	?	7		02/Eb/96	00564	P	RG
26	13/dic/95	sn.	QUALITEC	HIDROELECTRICA	9.50	ALAMBI/QUITO			02/feb/96	00567	N	
-				HIDROELECTRICA	4.80	PUELA/PENIPE	Ì					
27	11/ene/96	11025-96	CONCANAL S. A.	HIDROELECTRICA	20.00	SABANILLA/ZAMORA			02/&b/96	00524	N	
28	04/cnc/96	\$70	CORELMANABI S. A.	TERMO-?	50.00	MANTA	?		02/feb/96	00566	P	RO
29	09/ene/96	\$470	CONERSUA CONTRACTOR	TERMO-RESIDUO	50.00		√		09/5сБ/96	00725	P	RC
30	09/enz/96	ECA002-96	ELECTROCUENCA	TERMO-DIESEL	1.00	CUENCA/AZUAY	?				PEN	CC
31	8/feb/96	1101-96	HIDRELGEN	HIDROELECTRICA	20.00	SABANILLA/ZAMORA	?		20/mar/96	01538	PEN	
32	S/feb/96	#n	INABRONCO	HIDROELECTRICA	50.00	APAQUI	?		12/mar/96	01318	PEN	CC
33	23/feb/96	1-B	ECUAINVEST	TERMO-BUNKER	50.00	ESMERALDAS	?		20/mar/9=	01541	FEN	
34	26 fen 96	s/n	EXPROCON	HIDROELECTRICA	50.00	APAQUI	7	1 -	19-mar/96	01475	PEN	C
3.5	15 mar '96	E15.4-145-96	EFFICIENCY INTERNATIONAL	?	30.00	ORIENTE		1	18 _M br/95	02047	PEN	Ţ
36	25/mar/96	J/2==5	GENQUITO	TERMO-BUNKER	46.0	?	?	,	24/sibr/95	02145	PEN	T_{L}
37	13/mar.96	E0996	ENERGOPALMA	TERMO-DESECHOS	6.0	PICHINCHA/N.OCC.		1	24.abr/95	02178	PEN	T
	_		.	PALMA						į		
38	15.ahr/96	s/n	GENSTAR	TERMO-BUNKER	37.0	GUAYAS	1	✓			PEN	T
39	27/mar/96	sin	CONSORCIO SIN OYA-CONGENER	HIDROELECTRICA	17.0	SALOYA/N.O. PICHINCHA			19 abr/%	022059	PEN	
			TOTAL TERMOELECTRICO		323.5	o c			, , ,			
			TOTAL HIDROELECTRICO	and the second	248.3	o o						
			TOTAL HIDROELECTRICO TOTAL SIN ESPECIFICAR FUENTE		248.3							
	•		TOTAL GENERAL		601.8			m				

PERMISO TIPO: P: PROVISIONAL; D: DEFINITIVO; PEN: PENDIENTE; N: NEGATIVO

OBSERVACIONES: A60: Ampliación del permiso provisional por 60 días; COMí: Documentación para análisis de Comisión Especial; RGG: Preparada la revocatoria para firma de gereccia; ADAJ: Ampliación consultada a la DAJ; ACOMI: Ampliación para análisis de Comisión Especial; AGG: Ampliación para firma de Gerencia; RGG*: Revocatoria prezarada para firma de Gerencia y pendiente informe de DAJ

Nota: Este cuadro se irá actualizando de acuerdo a la contestación correspondiente de cada solicitud

Fecha de ampaización: 26/abr/96

PLAKES ALTERNATIVOS DE EQUIPANIENTO DE GENERACION DEL SISTEMA MACIONAL INTERCONECTADO

PLAN N	o. 1	PLAN No. 2		PLAN No. 3	PLAN No. 4	PLAN No. 5
CENTRAL INST	NCIA FECHA DE ALADA OPERAC. G)		FECHA DE OPERAC.			TIPO DE POTENCIA FECHA DE CENTRAL INSTALADA OPERAC. (MM)
T. GAS ADJUD. REHAE. TERMICA - DIESEL - BUNKER T. GAS T. VAPOR DAULE-PERIPA I S. FRCISCO APAQUI T. GAS NAT. T. GAS NAT. ANGRMARCA	76.0 Oct/1995 27 Oct/1995 30 Oct/1996 125 Oct/1997 30 Oct/1998 30 Dic/1999 36 Oct/2001 30 Oct/2002 90 Oct/2002 50 Oct/2003 100 Dic/2003	T. GAS ADJUD. 92.3 REHAB.TERHICA - DIESEL 76.0 - BUNKER 27 T. GAS 90 T. VAPOR 125	Oct/1995 Oct/1995 Oct/1995	T. GAS ADJUD. 92.3 Oct/1995 REHAB.TERNICA -DIESEL 76.0 Oct/1995 -BUNKER 27 Oct/1995 T. GAS 30 Oct/1996 T. VAPOR 125 Oct/1997 DAULE-PERIPA 130 Oct/1998 S. FRCISCO 230 Dic/1999 TCC-GAS NAT. 100 Oct/2001 ANGAMARCA 50 Oct/2002 TOACHI FIL. 171 Oct/2003 T. GAS NAT. 30 Oct/2003 APAQUI 36 Oct/2003		T. GAS 30 Oct/1995 T. GAS ADJUD, 92.3 Oct/1995 T. GAS 90 Oct/1995 REHAB.TERMICA -DIESEL 76.0 Oct/1995 -BUNKER 27 Oct/1995 T. WAFOR 125 Oct/1997 DAULE-PERIPA 130 Oct/1998 S. FRCISCO 230 Dic/1999 TCC-GAS NAT. 100 Oct/2001 PAUTE-MAZAR 180 Dic/2002 ANGAMARCA 50 Oct/2006 C. SINCLAIR 432 Oct/2006
V.PRESENTE (1	0 ⁶ ປຣ\$) 1635.6 (1659.3)		(1639.0 (1662.7)			

NOTAS: - VALOR PRESENTE A OCT/1995.
- LOS VALORES ENTRE PARENTESIS INCLUYE EL COSTO ACTUALIZADO DEL DRAGADO DEL EMBALSE AMALUZA.

CALENDARIO DE INVERSIONES DEL PLAN DE EQUIPAMIENTO DEL S.

DEFINIDO PARA LA DEMANDA DE MENOR INCREMENTO

(Valores en miles de US. dólares)

(Palementen milet de 1861 del 1994)

						4									
• •	FECHA DE	POTENCIA	Cos:	O DE IN	/ DRSION	1	CALE	VDARIO	DE INVI	ERSIONE	5	en german men			yern ar
CENTRAL	OPERACION	INSTALADA		n de promonent de											
	Marie Carinina	[(MW)	- ML	→ ME →	L TOTAL .	ML _	, ME	ML	I ME] ML					HE
nut maken j				i minte region			\$ 15 mmm m						1		: - 1 ~= -
Rehab. Térmica SR -Diesel-Bunker (3)	Oct/1995	17.5	ļ	والمجتب والمراد				<u> </u>	ļ	! 					,
-Diesel-Diesel (3) T. Gas-Diesel-3	Oct/1995	90.0	1 1925] 	l j.			ļ
T. Gas-Diesel Westing. T. Gas-Diesel-1											 1381				i * I *
T. Vapor-Bunker-2 (4)	Oct/1997	1 25.0	15840	97300	113140	4324	26564	2687	[16508	1 8361	151363	1 467			!
Daule-Peripa (5). San Francisco +1: T. Ciclo CombGas Nat.	Dic/1999	230.0	73533	134777	208310			3052	4733	12752	35733	16211	43388	22953	38748
Apaqui 27	Oct/2002	1 36.0	25487	17272	42759	1.00	İ	ì	į	l :)				<u>;</u>
Paute II - MazarCooo Sinclair, Etapa.1;	1-Oct/2006	432.0	1165608	270155	435763	LACE	$\{\xi_{i}\}_{i=1}^{n}$,		10		i i		;-	
TOTAL DEI	N.V.E.R.S	I O N	1448732	851573	11300305	17976	183789	6937	140026	121201	188477	116678	46254	22953	38748
	n de marche de la des		1	to anyon	+	***********************	†	+	+	+	+		t	+	·

NOTAS: (1) Nivel de Precios: Enero de 1994 (1US\$ = 2084 sucres).

(2) Inversiones correspondientes al Plan de Obras de Generación Recomendado por los estudios de actualización, definido para la previsión de demanda de menor incremento. prevision de demanda de menor incremento. (3) Potencia Efectiva - Fuente: Unidad de Proyectos Especiales de la DISCOM.

(4) Nivel de Precios: Junio de 1994. Dato del Informe de la DEIC "Central T, rmica a Vapor 125 Mw. Informe No. 1", junio de 1994.

(5) Entidad propietaria; CEDEGE.

CUADRO No. 10

PREVISION DE LA DEMANDA

	PLAN MA	ESTRO DE E	LECTRIFICAC	CION (PME)	PLAN NAC	IONAL DE E	LECTRIFICAC	ION (PNE)
•	ESC. IN	FERIOR	ESC. SL	PERIOR	ESC. IN	ERIOR	ESC. SU	PERIOR
ΑŃΟ	ENERGIA	DEMANDA	ENERGIA	DEMANDA	ENERGIA	DEMAND	ENERGIA	DEMANDA
	DISPON.	MAXIMA	DISPON.	MAXIMA	DISPON.	MAXIMA	DISPON.	MAXIMA
	(GWH)	(MW)	(GWH)	(MW)	(GWH)	(MW)	(GWH)	(MW)
1991	6604*	1246*	6604*	1240*	6604°	1246*	6604°	1246*
1992	6908	1293	6908	1293	6827*	1252*	6827*	1252*
1993	7335	1405	7423	1446	7023 *	1353*	7023*	1353*
1994	7804	1510	7938	1536	7527	1422	7603	1437
1995	8204	1577	8393 /	1613	7674 /	`1448	7791	1470
1996	8570	1637	8863	1693	7870	1483	8069	1521
1997	8954	1707	9363	1785	8082	1521	8369	1575
1998	9345	1779	9871	1879	8472	1592	8855	1664
1999	9747	1852	10406	1977	8765	1645	9251	1736
2000	10243	1904	10983	2042	9097	1705	9694	1817
2001	10733	2040	11577	2200	9442	1768	10219	1913
2002	11155	2119	12216	2321	9784	1829	10757	2011
2003	11615	2206	12881	2448	10116	1889	11302	2110
2004	12069	2244	13590	2527	10431	1945	11849	2209
2005	12582	2391	14374	2731	10765	2005	12434	2316
,2006	13092	2487	15100	2869	11112	2067	13054	2428
2007	13636	2592	15827	3008	11500	2136	13740	2552
2008	14201	2640	16565	3080	11926	2212	14488	2687
2009	14752	2803	17357	3298	12383	2294	15295	2833
2010	15416	2929	18172	3453	12865	2380	16155	2989

^{*} DATOS HISTORICOS

Cue de 1911: 9

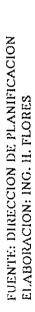
INECEL

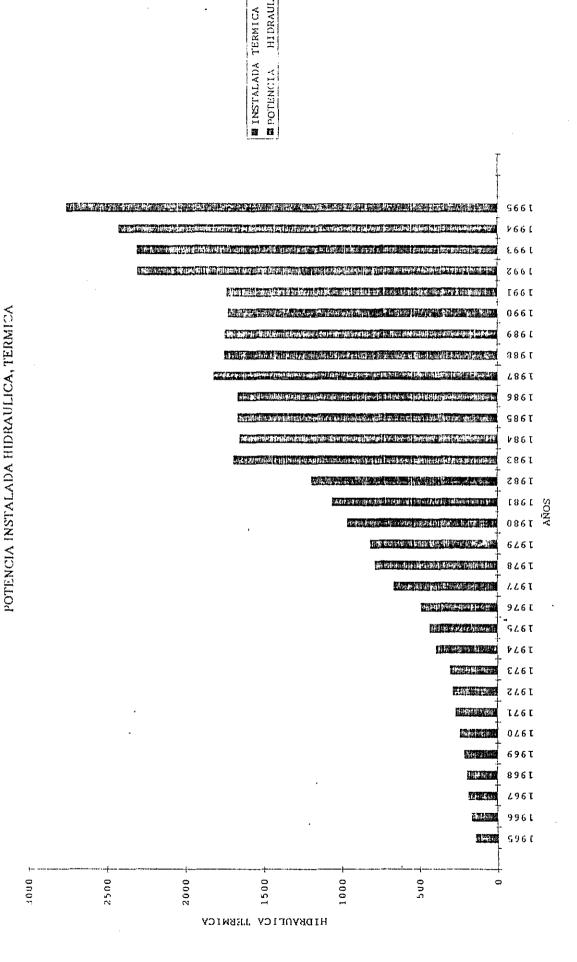
UNIDAD DE PLANIFICACION OPERATIVA ENERGETICA

PADROLOGIA EXTREMADAMENTE SECA

Generacion desglosada de centrales hidroelectricas y termoelectricas: ENERGIA (GWH)

NOMERIE CENTRAL	440	terno	ene/%	lab	rmer.	165	yeen	lau	lui	MgO	DOD	ost	nyv	বাত	IUIAL
TOTAL OCT TO	2		100 00000	336 3.22	hani in	<u> </u>			41		2: MATE NO.				8028.9
1,10,HIDROELEGTRICA			415.0	471.0	348.7	456,7	AAB,4	502.7	541.0	519.9	402.6	357.7	279,1	246,0 47,1	846.5
1.1 E.ELECTRICAS	١ (64.8	63.6	\$2.7	69.3	€6.6	61.8	50.f	44.0	45.5	47,4	45.0	30.0	374.4
Guite	H		35 5	NO D	74.4	(P) 5	75.1	30.5	27.7	27.9	55 3	28.0	26.7 0.6	0.7	118
Ambato	н		0.2	1,7	0.9	09	1,1	1.1	12	11	1.2	0.7	2.0	2.1	27.4
Cotopasi	Ħ		21	37	2.5	2.0	5.3	29	2.9	2.2	2.6	2 9 5 0	4.5	4.0	90.5
Richanita	н	İ	5.9	7.1	4.5	4 17	4.7	6.5	51	1 49	5.5		30	30	44.1
Norte	н		6.1	7.0	?1	32	3.4	9.1	3.0	3.0	2.9 7.5	3 D 6.3	* 58	6.3	109.8
Contro Sur	н		17.4	50.5	50	5.7	7.2	63	30	770	1.3	1.2	10	1.0	127
φ. _P	н		0.5	1.1	1.2	1.2	1.0	1.0	12	478.1	349.3	312,3	233 2	198.8	4389.4
1.2 INECAL			251.2	387.2	295.0	397.8	389.8	460.9 3.0	\$91.7 0.7	975.1	57-	23.9	7.5	3.7	101.9
Pugara	н		10.0	€.2	10.0	36	9.7 205.2	349.1	0.7 C.(ISA	2691	274.1	210.7	172.3	143.B	3348.4
Molino	н		2/9.7	330.3	317.3	317.5		90.5	107.7	103.9	79.5	67.7	57.4	51.4	933.7
- Адгулп	н		55.5	30.1	£9 7	76.4	n) (i	17.	1117.7	IVA	4.4.2	*****	31,4	2	
2. G.TERMOELECTRICA			317.7	272.6	411.2	344.6	384.5	301.4	220,5	295.2	288.8	471.0	478,8	AP 5.7	4765.7
2,1 E.ELECTRICAS			112.3	85.4	99.6	86.2	30.7	108.0	110.7	109.6	108.3	119.5	112.8	117.1	1251.8
Varior Emples	v		34.9	30.0	40. 2	19.4	pu t	9 1 5	A) 3	89.5	32.4	.46.0	37)9	40.2	405 7
Bunker:			11 2	6.0	51	4.9	21	6.3	8.1	r i	7.0	úè	6.0	8.6	79.7
Quás	D	ъ	. 0.7	4.2	17.0	7.9	9.0	4,1	5.0	50	5.9	45	49	4.5	54.2 10.9
Manabi	מ	ь	25	1.2	15	1.4	• 5	1.4	1.5	15	1.4	0.0	1.4 n n	1.5 0.6	19.9
Eltito	o	, b	0.5	0.6	0.5	0.5	0.6	7,5	0.0	υ¢	0.6			27.7	24/14
Dienal:			22.9	12.1	22.7	20.7	259	24.9	20.1 -	25 4	24.9	27.3 2.7	27.2	2.7	277
Chric	n	ત	0.7	Q.4	27	2 4	21	2.6	27	27	2.5	0.7	ीर कि	0.3	21
Norta	0	đ	01	ÚΟ	0.3	n a	0.3	បទ	0.3	0.3	en		12	12	1(1.9
Ambolo	O	ત	0.0	0,7	aŋ	0,0	0.0	D.A	0.8	0.5	1.2	15	26	0.5	7.0
Riotyanite ·	٥	d t	07	U 3	0.6	0.5	0.8	0.6	0.6	0.5	0.6	01	0.3	61	1.2
#ohvat	ם	d	0.1	0.1	0.1	0.1	0.1	01	0.1	0.1	0.0	0.7	0.5	3.7	10.7
Eon etaldos	Þ	ď	0.6	0.3	1.3	1.0	1.3	13	0.7	0.7 0.7	0.0	97	G 7	0.7	15.6
Milharo	٥	d	1,1	0.5	0.7	0.7	0.7	0.7	07	50	64	55	F.4	88	50.8
Centro Bur	٥	đ	J.9	1.7	5.0	1.9	5.3	61	53	1,0	1.0	1.0	10	1.0	12.0
El Oro	0	ď	2.0	1.3	1.0	1.0	1.0	1.0	05 45	4.5	4.0	5.0	5.6	5.6	£9.0
Menabi	ס	đ	6.5	3.4	68	4.3	4.5	4.3		35	2.3	35	33	9.5	99.5
Panincula	0	4	4.2	2.4	2.5	3.3	3.5	2.5 2.5	2 0 2.7	2.7	2.5	2.9	2.6	27	30.5
9ur ·	٥	d	24	1.2	2.7	2.5	2.9	1.2	1.2	1.2	1.2	1.2	1.2	12	12.2
8to Demingo	0	d	0.0	0.2	1,2	1.2	1.2	41.2	42 6	42.8	41.2	42.8	41.2	45 6	450 7
Gze: Emples	G	ď	42.7	30.5	31.5	41 2	42.0	88.9	19.6	24.0	12.6	142,4	147.5	164.0	1059.4
2.2 E. PARTICULARES			10,9	15,1	27,3	94.7	124.8	80.9	17.0	27.0					0.0
Datosi:			l				6.1	5.9	0.0	5.1	5.2	8.1	5.9	6.1	77.9
Electroquil	D	d	14.9	5.5	9.1	5.9 2.0	3.0	2.9 2.9	0.0	3.0	2.9	3.0	2.9	3.0	24.0
Electroquila	D	d	1,2	42	9.0 5.7	2 17 9.5	9.0 6.7	85	0.0	8.7	9.5	5.7	6.5	6.7	61.5
Меяко	P	ь	1.4	0.6 0.0	9.7 0.0	20.5	42.5	41.1	19.1	42.5	47.9	56.4	54.8	55.4	391,0
Electroquil-Futuro	D	d	00	D.0	62.5	30.9	40.3	12.4	00	24.7	0.0	60.2	57.0	61.6	C50.8
Shacont S. Doo.	D	d	0.0	51	50.0	19.0	20.0	01	0.5	11.6	190	20.0	• 10	50.0	z 184.5
Sancol S. Elene	0	٩	189.6	131.8	213.4	183.7	162.2	124.6	108.0	80.8	208.1	215.1	216.7	224.0	2083.0
3'3 INECET			158.6	117.0	172 1	123 6	127.9	30.0	47.5	49,5	176.6	162.7	176.8	182.7	1607.4
Vacor:	١.,١		908	59.0	293.4	42.8	44,2	30.0	49.5	49.5	95 8	29.0	95.0	93.0	994.1
G Zevelico	\ <u>`</u>	b	778	57.7	83.7	กเ 0	63.7	0.0	00	0.0	81.0	80.7	€1, 0 ≥	63.7	713.3
Entretalded	٧	D	_	_	14.5	14.0	14.5	0.0	14.5	14.5	.14.0	14.5	14.0	14.5	144.2
Bunker: Guangop.	٥	Ъ	96	5.6	14 C	26.3	20.8	34.5	44.0	28.6	17,0	17.9	25.9	26.8	302.2
(J.Not	ا ڀ	ا . ا	20.3	9.2 0.3	50.0	66	6.9	86	11 &	8.9	0.0	0.0	6.6	8.9	7.7.6
G. Zev. #4	a	4	0.5	6.B	17.0	17.3	17.9	25.9	32.4	17.9	17,3	17.9	17,3	17.9	228.4
Sania Rosa	G	ď	196	C.N	1		•								
		'	733.5	703.6	759.0	, 600.7	629.9	804.1	820.1	813.1	799.4	#30.7	755.0	741.1	9394.0
3. QEH.TOTAL (1.+ 2.)						,						~ ~	20.4	1044	
J. OEH.TOTAL (1.+2.) 4. DEFICIT			43.2	73.2	.55.2 #18.1	0.0 #,00#	0,0 #20.9	0.0 #04.7	0.0	0.0 #15.7	0,0 7 49.4	0.0 8.0tu	80,4 814.2	109.4 850.6	291,6 9486.6

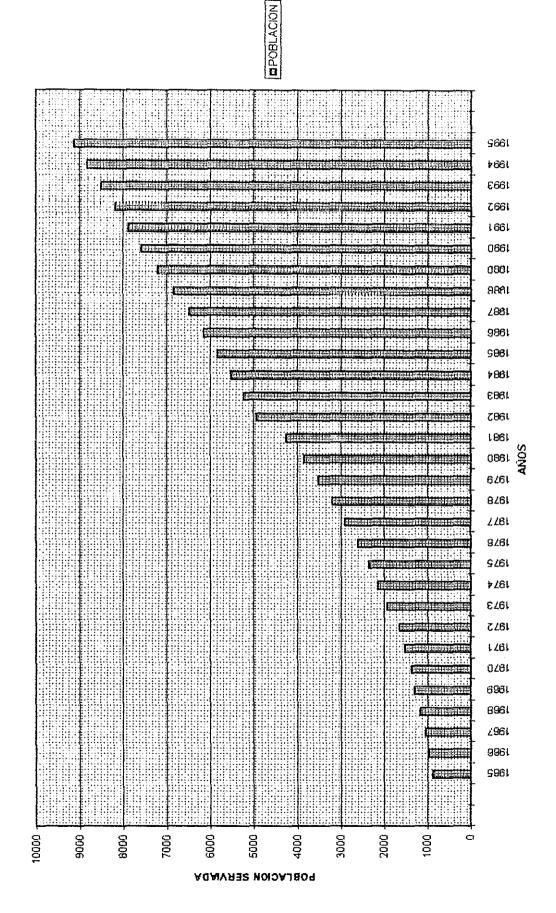

^{*)} Enero y Febrero son valores estadisticos disponibles en el CFHACE.

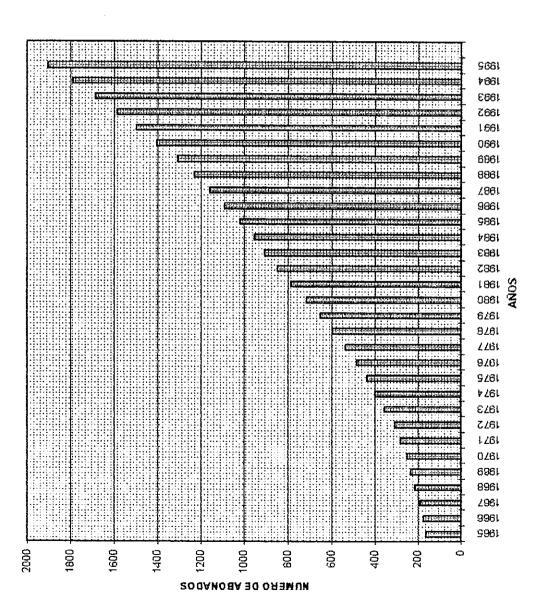

DIRECCION DE OPERACION DEL SNI

CENTRO NACIONAL DE CONTROL DE ENERGIA UNIDAD DE PLANIFICACION OPERATIVA ENERGETICA RESULTADOS DE OPERACION DEL SNI: 1995

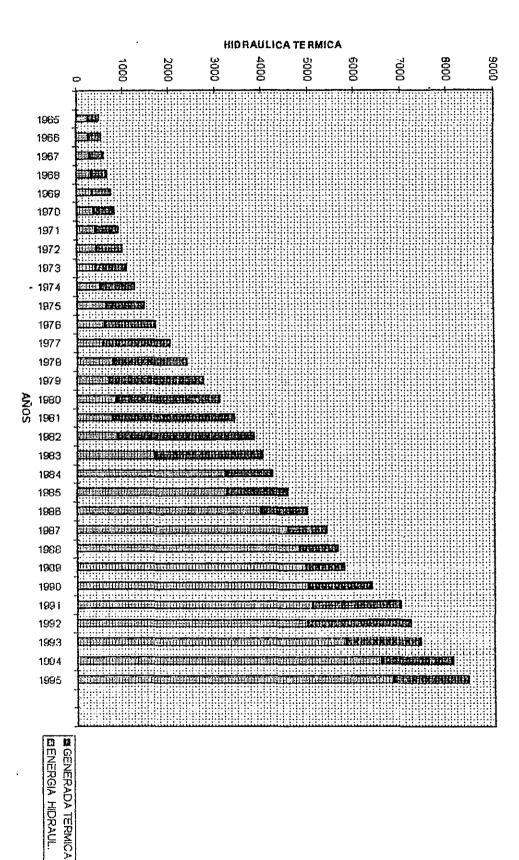
hidroelectricas y termoslectricae a nivel bornes de gonerador: ENERGIA (QWH)

					,					, 					o No.
NOMBRE CENTRAL	TIPO GENERAC.	ТІРО СОМОЦЭ.	ENE	rep	MAR	ABR	YAM	JUN	JUL	AGO	O EP	аст	, , , , , , , , , , , , , , , , , , ,	DIG	101
, G. HIOROELECTRICA	:		461.1	342.6	349.8	403,8	611.E	601.0	630,8	3510	290.6	309.6	496.9	411,3	616
.1 E. ELECTRICAS (1)			60.5	42.8	60.2	69,4	84.1	57.6	54.0	44.3	37.5	44.2	71.3	82,4	85
Quito	Hidroelectr.		29.2	23.0	23.2	33.4	31.8	26.1	21.7	33.0	17.0	23.7	36.8	30.0	j . ≱
Ambalo	Hidroeleutr		0.9	0.2	0.2	0.3	0.8	0.7	1.3	0.3	0.2	0.1	0.7	0.2	
Cotopasi	Hidrookutr.		3.1	2.5	2.2	2.4	3.3	3.2	1.2	1.2	3.1	2.4	3.3	2.9	
Biotembe	Hidroelects.		0.4	6.6	წ.0	6.4	6.4	7.0	79	7.2	5.6	0.6	7.0	15.7	
Norte	Hidrogiootr.		5.6	9.0	3,9	59	8,4	5.1	3.7	3.2	5.1	.4.0	0.0	8.1	١,
Centre Gur	Hidroelestr.		6.1	8.8	7.4	6.9	11.1	12.3	13.6	9.0	6.3	6.0	15.6	16.4	1
Sut	Hidroeleatr.	, F,	0.1	0.3	1.5	15	1.3	0.6	1,7	1.4	1.4	1.2	1.1	1,1	
2 INECEL (2)			400.3	239.7	230.6	\$40.8	447.6	645.4	676.9	307.5	261.1	255.4	425,6	348.9	48
- Pucara	Hidroolectr.	1	47.8	43.6	20.6	11.2	9.3	5.5	7.0	22.5	8.3	21.4	5.5	27.5	C 2
Molino	Hidroclocks.		270,1	199.€	219.9	269.0	363.0	459.7	514.4	228.8	196.1	104.7	244.2	257,6	. 36
Augyan	Hidroelegit		82.4	56.6	59.1	64.5	75.2	70.2	(.5.4	53.2	10.7	69.0	72.9	69.6	. 7
. G. TERMOELECTRICA	. new paragram		200.9	318.0	362.9	279.2	248.1	196,8	111.6	387.4	548.5	316.7	198.4	295.6	₹1
.1 E. ELECTRICAS			79.5	77.0	96.7	89,2	78.6	47.6	46.0	26.2	111.0	110.9	58.1	151,1	10
Vapor: Emolec (3)	Vapor	Bunker	40.3	38.2	35.3	40.2	35.1	36.1	24.0	26.5	on.5	40.2	30.9	41.0	4
Sunker: Quile (4)	Combini	Bunker	2.2	0.9	5.8	5.6	1.4	2.7	1.5	6.6	10.2	10.1	7.0	8.2	
Disosi:		}	11.7	16.2	22.0	17.0	14.9	2,1	5.1	25.7	26.3	27.9	17.9	23.0	1 3
Ciunto (4)	Comblint	Diagral	12	1.8	2.0	3.1	2.3	0.0	2.6	1.4	20	C.3	0.0	0.5	}
Engresso (1)	Comb.int.	Dissol	10.5	14,4	20.9	13.9	12.6	2.1	3.5	24.3	26.3	27.0	17.9	25.5	1
Gae: Emelec (3)	Gaa	Discol	25.0	21,5	91.8	20.2	25.1	72	4.7	25.2	33.0	32.7	24.3	53.5	٠. :
.2 E, PARTICULARES	Gau		27.5	33.6	43.7	16,4	10.2	2.7	1.8	19.7	17.9	19.7	9,4	16.9	∫ . 2
. Gan:		7. **			'			1	İ]			*		100
. uses: 	Gara	Diocel	27.5	33.5	43.7	10.4	10.2	2.1	1.0	12.7	179	19.7	9.4	10.9	2
	3.50	1.663	198,9	204.6	223.5	167.5	161.4	87.1	63.0	168,6	219.6	186.1	101.0	146.6	, 19
3 INECEL (2)			167,6	160.2	108.2	102.9	129.8	63.7	E9.0	116.9	178.0	145.0	65.2	110.0	1, 35
	Vapor	Bunker	90,5	81.7	87.1	77.0	66.2	31.0	47.7	90,0	87,9	85.7	,00.2	51.8	
Gonzelo Zevellos		Bunker	61,1	70.5	1 01.1	55.9	64.7	51.9	12.1	28.9	00.1	\$3.3	0,0	53.4	1.56
Eomerakisa (Vapor	Bunker	7.0	13.0	16.0	11.0	11.3	0.9	2.5	14.3	15.5	, 12.6	11,5	10,9	437
Bunker: Guangepolo	Comb.int.	BRUM	18.6	30.0	005	23.7	20.2	2.5	1,4	33,3	20.1	20.5	29.9	24.7	317, 2
t Gae:	Gnp	Diepel	0.7	7.4	7.2	5.5	2.6	0.6	0.0	12,0	7.0	11.0	2.7	0.0	7.5
Q, Zevalice #4	Gna	Dissel	14.8	23.4	31.3	18.2	17.8	2.0	1,4	20.5	20,2	17.5	20.6	24.7	30
Sepin Room	(380) Visit	752.0	668.6	712.7	670.6	769.7	797.0	742.3	\$34.2	647.1	620.3	695.4	704.0	
, GEN, TOTAL (1. + 2.)			0.0	0.0	10.7	28.0	0.0	0.0	0.0	114.9	92.1	149.6	\$1.0	88.2	
i. Deficit (6 5.)	j	1 4 3 3 4	0,0			705 0	769 7	797.0	742.4	749.5	739.2	789.8	767.3	793.1	7.00



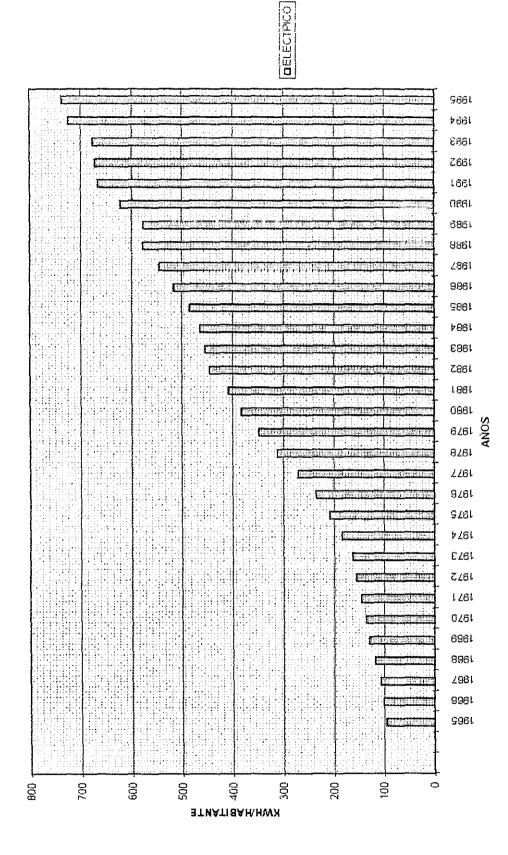


81

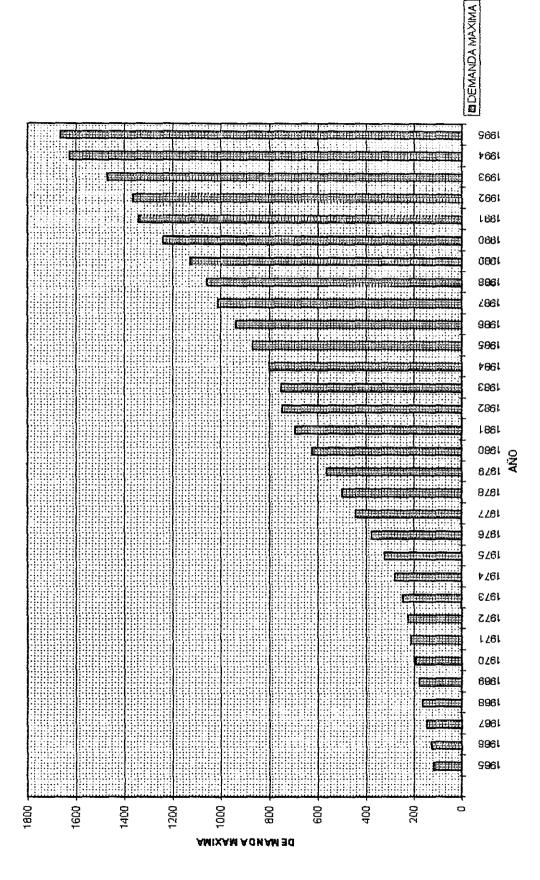

HIDRAUI.

POBLACION SERVIDA POR AÑOS

ENERGIA GENERADA:HIDRAULICA TERMICA



WATTOS FOR HABITANTE


Ę

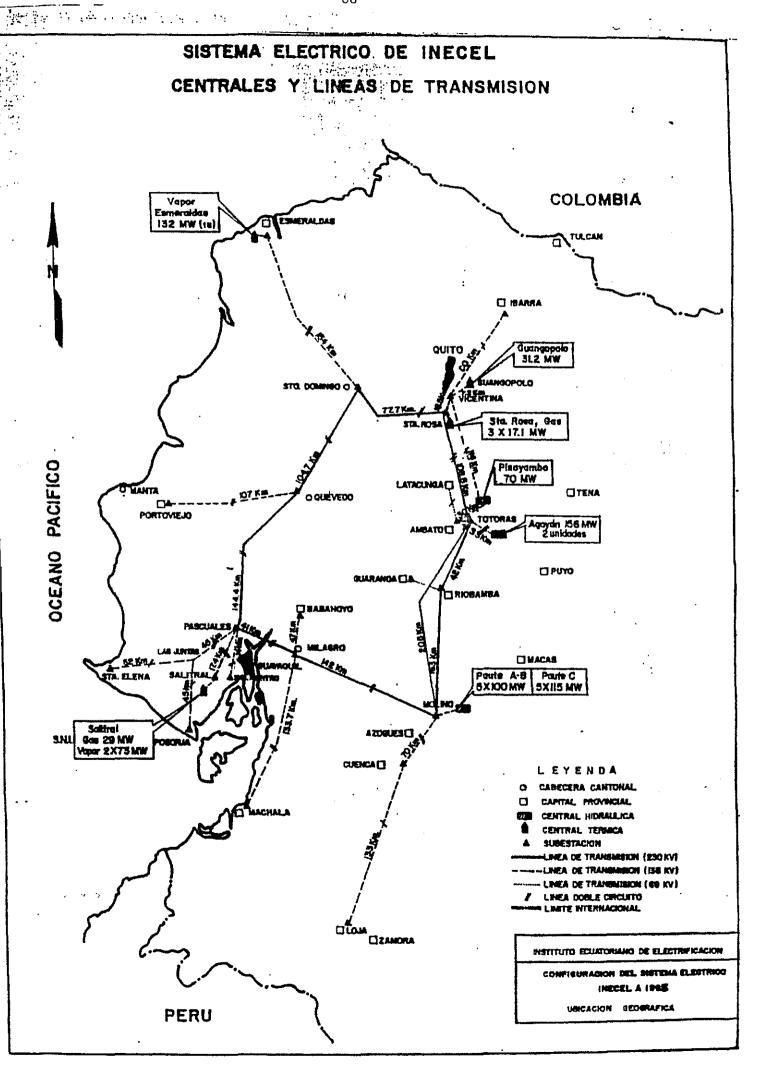

SOLEAW

GRAFICO 6

DEMANDA MAXIMA(MW) POR AÑO

BIBLIOGRAFIA

ASOCIACION DE INGENIEROS DE INECEL Boletín Técnico, AIDI, Quito, 1987.

CISNEROS, Petronio,

"El proceso de identificacion, evaluación y aprove chamiento del recurso hidroenergético", Revista Técnica AIDI, Quito 1986

COLEGIO DE INGENIEROS

"Revista Técnica, CICP, Quito, 1985

DIRECCION DE OPERACION DEL SNI

"Informe de Resultados de Opera ción de l SNI, INECEL, 1996.

DIRECCION DE PLANIFICA-CION INECEL, "Plan Maestro de Electri ficación, Período 1990-1-999", INECEL.

DIRECCION DE PLANIFICACION INECEL,

"Plan Maestro de Electrificación 1985 del Ecuador, Período 1984-2010", INECEL

DIRECCION DE PLANIFICACION INECEL,

"Plan Maestro de Electrificación 1980, Período 1980-1984", INECEL

DIRECCION DE PLANIFICACION INECEL,

"Actualización del Plan Nacional 1994 de Electrificación, Período 1994-2010, DIRECCION DE OPERACION SNI

"Informe de resultadosde operación 1996 del sistema eléctrico de INECEL, Enero-Diciembre de 1995", INECEL.

LUCIO Bolívar,

"Las tarifas del servicio eléctrico, su incidencia 1983 socio-económica en el usuario, su papel como racionalizador en el consumo de energía.", IAEN.

OREJUELA , Víctor

"Influencia del Sistema Nacional de Transmisión en la Seguridad del Suministro de Energía a nivel Nacional, IAEN, Quito, 1994.

AUTORIZACION DE PUBLICACION

Autorizo al Instituto de Altos Estudios Nacionales la publicación de este trabajo y anexos, como artículo de la revista o como artículos para lectura seleccionada.

Quito, julio de 1994

FIRMA DEL CURSANTE

HERMEL FLORES MALDONADO

NOMBRE DEL CURSANTE